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Abstract

In this report we show that the observed inter-neuronal correlation reflects a superposition of correlations associated with the
intrinsic correlation between neurons, and correlations associated with variability in the stimuli presented to, or the actions
performed by, the subject. We argue that the effects of either stimulus or action variability on the observed correlation, though
generally ignored, can be substantial. Specifically, we demonstrate how observed correlations are effected by trial to trial
variability in either stimulus or action. In addition, assuming that all relevant stimuli and actions are known, we outline a method
for eliminating their effects on the observed correlation. It is also shown that tuning of correlations to a stimulus or an action
might be a direct consequence of variability in that stimulus or action, even in the absence of any modulation of direct
inter-neuronal interaction. The effects of stimulus and action variability should therefore be carefully considered when designing
and interpreting experiments involving multi-neuronal recordings. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the most appealing notions concerning neu-
ronal organization is that the functional connecti�ity
between neurons is not fixed, but rather is a property of
the state of the neuronal-network (Hebb, 1949; Ger-
stein et al., 1978, 1989; Abeles, 1982; Barlow, 1992;
Nicolelis et al., 1997). The state of the neuronal-net-
work is assumed to be related to the ‘external world’,
defined in this context as the set of stimuli and actions
perceived and performed by a subject1.

If, as suggested above, the state of the neuronal
network reflects the stimulus, then different patterns of
stimuli should induce different patterns of interactions.
Indeed, stimulus related interactions on various time

scales have been reported by several groups (Vaadia et
al., 1991, 1995; Gruen, 1996; Hatsopoulos et al., 1998;
Steinmetz et al., 2000; Baker et al., 2001). Some of these
studies describe changes in correlation as a function of
the stimulus or the behavioral set. Alternatively, the
focus may be on the temporal modulation of the corre-
lation (Aertsen et al., 1989; Ito and Tsuji, 2000). In the
present report we argue that trial to trial stimulus
variability can account for stimulus, or set dependent
correlations. Alternatively, changes in stimulus variabil-
ity as a function of time within a specific type of trial
can lead to temporal modulations of correlation. These
correlations are simply a consequence of a confounding
variable, namely, the stimulus.

While the common experimental design of trial repe-
tition assumes that all trials are identical, this condition
is not always met. In fact, stimulus variability is not as
rare as it may appear. When comparing controlled
epochs (e.g. fixation on a visual target) to non-con-
trolled epochs (e.g. no restriction on eye position), the
differences in stimulus variability are obvious. How-
ever, stimulus variability also plays a role in ‘controlled’
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situations. For example, fixation on a visual target does
not ensure a constant visual input since micro saccades
can still occur (Gur et al., 1997). Similarly, a ‘straight
hand movement’ is rarely perfectly straight, and move-
ments toward certain directions are often performed
with larger variability as compared to other directions
(Turner et al., 1995).

In the following sections we demonstrate and quan-
tify the effects of stimulus variability on the observed
correlation and synchrony between neurons. In the
context of stimulus variability, we view spike count
correlations (on a long time scale) and spike timing
synchrony, as manifestations of the same phenomenon
in different temporal scales. However, as these two
cases call for a different mathematical analysis, they are
treated separately.

2. Methods

2.1. Spike count distributions and their correlations

In our analysis, we assume that an experiment con-
sists of a set of trials, where a trial is composed of a
stimulus presented to the subject, an action performed
by the subject, or any combination of stimuli and
actions. As trials are performed, spikes emitted by (at
least) two neurons are simultaneously recorded. Let
Xi,[t,t+�t](sj) denote the number of spikes generated by
neuron i, within a time interval [t,t+�t ], in response to
stimulus sj. Here, sj is the value of the stimulus in trial
j, and t denotes the time relative to trial onset. The
interaction between neurons, say i=1 and 2, is mea-
sured by the correlation between X1,[t,t+�t](sj) and
X2,[t,t+�t](sj), over the trial index j. In the context of this
paper, we limit ourselves to the case of identical time
segments for both neurons’ counts. In other words, our
analysis deals with zero lag correlation. To simplify
notation, we omit the trial index j, and the time specifi-
cation [t,t+�t ], and use Xi(s) to denote the random
variable representing the number of spikes generated by
neuron i in response to stimulus s.

2.1.1. High spike count
We express the random variable Xi(s), as a sum of a

deterministic term �i(s), and a probabilistic noise term
Ni(s):

Xi(s)=�i(s)+Ni(s) (1)

In this formulation, both the mean response and the
noise distribution are stimulus dependent. While ex-
pression (1) could in principle describe any random
variable, we shall use it exclusively for spike count
distributions in which Xi(s) assumes values larger than
1.

To derive an explicit expression for the correlation
between the spike counts of different neurons under
various conditions (Section 3.2) we shall assume that
the noise Ni(s) is given by:

Ni(s)=�i(s)N� i=ki�i(s)mi N� i (2)

where ki and mi are constants characteristic of neuron i,
and N� i is a random variable with a mean of 0 and
standard deviation (SD) of 1. We call N� i the normalized
noise. Two assumptions are embodied in expression (2).
The first equality implies that the noise distribution is
given by a stimulus independent distribution (i.e. the
distribution of N� i), scaled by a stimulus dependent
standard deviation �i(s). The second equality provides
a rather general power law representation of �i(s) as a
function of �i(s). Such a power law relation between
�i(s) and �i(s) has been observed in various experimen-
tal studies (Gur et al., 1997; Lee et al., 1998). In
particular, the special cases mi=0 and mi=1 corre-
spond to spike count distributions in which the stan-
dard deviation is independent of the mean, or is a linear
function of the mean, respecitively. For mi=0.5, it is
the variance which varies linearly with the mean, in
which case ki is actually the square root of the Fano
factor (Rieke et al., 1997).

To model the interaction between the neurons, we
shall sometimes make the additional assumption that
the normalized noise factors of a pair of neurons (N� 1

and N� 2), are derived from a bi-normal joint probability
distribution with both means equal to 0, both standard
deviations equal to 1, and a correlation coefficient �.
Thus, � provides a measure for the interaction between
the neurons. Under these assumptions, Xi(s) is dis-
tributed normally with mean �i(s) and a standard
deviation �i(s). We shall therefore refer to this repre-
sentation as the normal approximation. Note that, in
general, �=�(s), may depend on s, the specific value of
the stimulus s.

Hereafter we shall refer to the correlations between
the spike counts Xi(s) as the spike count correlations.
When the stimulus is kept constant across all trial
repetitions (i.e. no stimulus variability), the correlation
between the spike counts Xi(s) of two neurons, as well
as between the Ni(s) and between the N� i factors, are
identical. We name this correlation the intrinsic correla-
tion (IC), and regard it as a measure of the functional
connecti�ity between neurons.

2.1.2. Low spike count
In the low count limit the firing of neuron i within a

given time bin [t,t+�t ] is modeled as a zero/one pro-
cess with Pi(sj) denoting the spiking probability in the
given time interval in response to sj, the stimulus in trial
j. In other words, the spike counts Xi(sj) in the interval
[t, t+�t ] follow a Bernoulli distribution with a success
probability Pi(sj). Note that, in general, the success
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probability is a function of the stimulus. If, however,
the stimuli, and thus the firing probability, in all n trials
are constant (Pi(sj)=Pi(s)=Pi), then the sum of
counts of neuron i over all n trials in a given time bin
[t,t+�t ] is distributed binomial: �Xi,[t,t+�t](sj)�
b(Pi,N), where the sum is over the trial index j. Here-
after we omit the time interval specification and trial
index.

Unlike in the high count case where the inter-neu-
ronal interaction was quantified by the correlation co-
efficient, here we shall use the degree of coincident
spiking as a measure of this interaction. We define the
random variable Z as the number of trials in which
both neurons spiked in the given time bin, summed
over all n trials,

Z=�
j

Xi(sj)X2(sj). (3)

If the firing probabilities of both neurons are inde-
pendent and constant over all trial repetitions, then the
probability that both neurons fire in the same time bin
is given by the product P1P2. Under these conditions, Z
is also distributed binomial: Z�b(P1P2,N) (Palm et al.,
1988).

2.2. Estimation of spike count distributions

In the high count case, the spike count distribution is
specified by the mean response �(s), and the corre-
sponding standard deviation �(s). In the low count
case, where spike counts follow a Bernoulli distribution,
only one parameter, the firing probability P(s), is re-
quired. Next, we show how these parameters could be
evaluated from the observed spikes counts and stimulus
values.

2.2.1. High spike count
Our procedure for evaluating the function �i(s) from

a set of stimulus values, and a corresponding set of
spike counts, is illustrated in Fig. 1A. To obtain �i(s)
we fit polynomials of various orders (typically 2–10) to
an arbitrary half of the data set. The polynomials thus
obtained are then used to approximate the responses
Xi(s) to the stimuli in the second half of the data. The
polynomial order providing the best fit to the second
part of the data set is subsequently used for evaluating
�i(s) based on the entire data set. The purpose of this
procedure is to find the highest polynomial order which
does not result in over-fitting. The noise Ni(s) in any
trial associated with stimulus s, is obtained simply by
subtracting the mean response �i(s) from the observed
spike count Xi(s).

Derivation of ki and mi (and hence �i(s)) from a set
of stimulus values s, and a corresponding set of spike
counts Xi(s), is illustrated in Fig. 1B. First, the entire
stimulus range (of the given data set) is divided into a

number of consecutive stimulus value bins. Then, the
standard deviations of the counts Xi(s) are calculated
for each of the bins. Finally, ki and mi are evaluated by
the (best fit) line describing ln(�i(s)) versus ln(�i(s)); mi

is the slope of this line and ln(ki) is its intercept.
Naturally, estimation of ki and mi is sensitive to the

size of the bins used for sectioning the stimulus range.
The bins should be small enough so that the function
�i(s) within a given stimulus bin is approximately con-
stant, but also large enough so that a reasonable num-
ber of data points is included in each stimulus bin.

2.2.2. Low spike count
To estimate Pi(s) we divide the range of stimulus

values into a set of successive bins. The firing probabil-
ity within each stimulus bin is given by the ratio of the

Fig. 1. Estimation of spike count distributions. A: Estimation of
mean response function �(s) is accomplished by fitting a polynomial
(continuous curve) to the spike counts as a function of stimulus value
(dots). B: Estimation of the relationship between the standard devia-
tion �(s) and the mean response �(s) by the relation �(s)=k�(s)m

with m and k constants. The range of stimuli is divided into consecu-
tive bins, as shown by the dotted vertical lines in (A). A line is then
fitted to the data points representing natural logarithm (SD) of the
counts in each of the stimulus bins vs. the natural logarithm of the
average stimulus in that bin. The slope of the line gives m and the
intercept gives ln(k). To generate the data set for this illustration, we
simulated the response of a neuron with a normal spike count
distribution: x(s)�n(�(s),�(s)0.5) with �(s)=40+26 cos(s) sp/s;
Thus k=1 and m=0.5. A total of 1000 stimuli s were sampled
uniformly from the continuous range [0,2�] radians. The polynomial
order used for estimating the mean response in (A) is 4. To estimate
k and m the stimulus range was sectioned into 20 bins, each contain-
ing 50 responses.
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Fig. 2. Simulation of Poisson spike trains during trials with tempo-
rally modulated stimulus variability. 200 trials of 1 s each were
simulated at 1 ms resolution. Mean response functions for both
neurons are �(s)=60–50 sin(s) sp/s. In each 50 ms time interval the
stimulus s was randomly selected, separately for each trial, from a
discrete uniform distribution with s ranging between −�/3 and �/3
at increments of �/9, except for the time interval 400–600 ms where
the value of s was 0 in all trials. A: Examples of stimuli from 8 trials.
Note that in the interval 400–600 ms stimulus values are invariably
zero. B,C: Dot displays for each of the two neurons. D: PSTHs of
both neurons (thin and thick lines) calculated with a 50 ms time bin.

neurons is due to their common mean responses, and
not to correlated fluctuations around these means.

To generate the data in Fig. 2, spike trains of 1000
ms duration were simulated at 1 ms resolution, so that,
within a given 1 ms time interval, a spike occurred with
probability �(s)/1000. To produce the stimuli, the trial
duration was divided into twenty 50 ms bins, within
which the stimulus value was kept constant, as shown
in Fig. 2A. In one specific time interval (400–600 ms),
corresponding to four time bins, the value of s was kept
constant (s=0, �(s)=60 sp/s) in all trials. For all
other time intervals, s was randomly selected, separately
for each trial, from a discrete uniform distribution with
s ranging between −�/3 and �/3 at increments of
�/9. A visual examination of the dot displays does not
reveal any obvious difference between the 400 and 600
ms time interval and the rest of the trial.

Fig. 3A shows a JPSTH of the spike counts of the
two neurons, calculated using a 50×50 ms time bin,
normalized so as to give the correlation coefficient
within each bin (Aertsen et al., 1989). The time evolving
zero lag correlation, as represented by the diagonal bins
(Fig. 3C), is nearly zero during the interval 400–600
ms, whereas, outside this interval, it is clearly positive.

In Fig. 3B we see that the JPSTH appears dramati-
cally different if the correlation is calculated using the
noise elements Ni(s) (Section 2.2), rather than the spike
counts Xi(s). Here we clearly see that the noise correla-
tion is virtually zero throughout the entire trial.

This example illustrates how dynamics of interaction
may seem to occur, when in fact the spike count
correlation reflects only dynamics of stimulus �ariability.
In general, the correlation between the Ni(s)’s need not

number of trials where a spike occurred (i.e. Xi(s)=1)
to the total number of trials in that bin. Finally, Pi(s) is
evaluated as the best fit polynomial between the firing
probabilities and the stimulus values in each bin. The
polynomial order is determined as described in the
previous subsection.

3. Results and analysis

3.1. Example: apparent correlations resulting from
stimulus �ariability

In Fig. 2 we show dot displays of simulated spike
trains from two neurons for a set of 200 trials. The
spike trains were modeled as non-homogenous Poisson
processes, with rates, identical for both neurons, given
by �(s)=60–50 sin(s) sp/s where s is the stimulus; for
example, we may think of s as the orientation of a
visual stimulus. We stress that although both neurons
are characterized by the same firing rate, the spike
trains of the neurons were generated independently.
Thus, by construction, any correlation between the

Fig. 3. JPSTHs of the spike trains shown in Fig. 2. A: JPSTH of spike
counts. B: JPSTH of noise components Ni(s). C: diagonal bins of
spike count JPSTH. D: Diagonal bins of noise JPSTH. Bin size for
both JPSTHs is 50×50 ms. Both JPSTHs are normalized so as to
give the correlation coefficient of spike counts within each bin. Bar on
the right provides the scale for the correlation coefficient within each
of the JPSTH bins.
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Fig. 4. Spike count correlation as a function of stimulus variability. Each curve shows the correlation coefficient between spike counts of two
neurons following bi-normal spike count distributions, with means given by (�1(s), �2(s)); standard deviations (SDs) given by (�1(s)m1, �2(s)m2)
and a correlation coefficient (�). Left panels: identical response functions for both neurons �(s)=50+40 s sp/s. Right panels: anti-correlated
response functions: �1(s)=50+40 s sp/s; �2(s)=50–40 s sp/s. Upper panels: � (intrinsic correlation)=0; middle panels: �=0.5; bottom panels:
�= −0.5. For each data point, 10 000 stimulus values were sampled from a continuous uniform distribution u[−�s,�s ] with �s ranging between
0 and 0.5, at increments of 0.05. The horizontal axis shows the SD of the stimulus, normalized by the SD at the maximum range of �s=0.5. The
three curves in each of the panels correspond to three different values of mi (identical for both neurons): 0, 0.3 and 0.6.

be zero, in which case, corrections for the dependence
of the noise distribution on the mean response are also
required. This last issue is discussed in Section 3.2.2 and
in Appendix B.

3.2. High spike count

3.2.1. Apparent correlation
In this section we discuss the effect of stimulus

variability on the correlation coefficient between spike
counts of two neurons in the high count limit. We
assume that the standard deviation of the noise depends
on the mean response as described in expression (2).
Using this assumption, we show in Appendix A that the
correlation coefficient between the spike counts of two
neurons is given by

CC (X1,X2)=
cov(�1(s),�2(s))+k1k2���1(s)m�2(s)m2N� 1N� 2�s�

�var(�1(s))k1
2��1(s)2m1� �var(�2(s))+k2

2��2(s)2m2�
(4)

where �...�s denotes the expected value for a given
value of s, and �…� denotes the expected value over all
values of s. All covariance and variance terms are
calculated over all values of s. From this equation it is
apparent that the correlation coefficient involves an
interplay between the Intrinsic Correlation (IC) and the

stimulus variability. A qualitative understanding of this
statement is provided by considering two extreme cases.
First, if the stimulus is constant, then all mean response
variance and covariance contributions vanish, and (4)
reduces to the IC between the neurons, namely

CC(X1,X2)=�N� 1N� 2� (4a)

In the other extreme, consider a situation where the
spike count variance is 0 for all s, i.e. k1=k2=0. In
this case (4) reduces to

CC(X1,X2)=
cov(�1(s),�2(s))

�var(�1(s))�var(�2(s))
(4b)

which is the correlation coefficient between the mean
response functions over all stimulus values. We shall
refer to the right side of (4b) as the mean response
function correlation (MRFC).

To gain further insight into the behavior of expres-
sion (4) we show in Fig. 4 how the correlation coeffi-
cient between spike counts of two neurons is effected by
stimulus variability. Each of the six panels in the figure
corresponds to a specific combination of IC (given by
�) and mean response function correlation (MRFC).
Within each panel, we show how the spike count corre-
lation behaves as a function of stimulus variability
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(horizontal axis), and noise variance (different curves in
each panel).

Specifically, spike counts were derived from a joint
bi-normal distribution, and are thus characterized by
their means and standard deviations, as well as the IC
(given by �). The three panels on the left display the
correlation coefficient between two neurons with identi-
cal response functions: �(s)=50+40 s sp/s (MRFC=
1). The three panels on the right correspond to a pair of
neurons with anti-correlated response functions:
�1(s)=50+40 s sp/s, �2(s)=50−40 s sp/s (MRFC=
−1). The top, middle, and bottom panels in both
columns correspond to three different values of the IC:
�=0, 0.5, and −0.5, respectively. In all cases, the
standard deviation of the spike counts is given by
�i(s)=ki�i(s)mi (expression (2)). The three curves in
each of the panels correspond to different values of mi :
0, 0.3, and 0.6 (identical for both neurons); in all cases
ki=1. Stimulus values were sampled from a continuous
uniform distribution u [−�s,�s ] with �s ranging be-
tween 0 and 0.5, at increments of 0.05. The horizontal
axis shows the normalized SD of the stimulus (i.e. the
SD divided by the maximal SD). For each data point
(characterized within each panel by a specific combina-
tion of �s and mi) 10000 stimulus values were sampled.

The quantitative analysis presented here is strictly
applicable only for the specific set of conditions de-
scribed above. Nevertheless, on the basis of the results
shown in Fig. 4, two important conclusions are evident,
regardless of the details of the spike count distributions
and stimulus variability. First, we note that when the
stimulus variability approaches zero, the spike count
correlation approaches the IC. In contrast, when stimu-
lus variability is large, the spike count correlation ap-
proaches the MRFC. In general, the observed
correlation coefficient assumes values intermediate be-
tween the MFRC and the IC. For example, when the
IC and the MRFC are of opposite signs, stimulus
variability may result in a spike count correlation of
opposite sign to that of the IC (see for example the
bottom left or middle right panels in Fig. 4). Second,
the smaller the variance of the spike count distribution
for a given stimulus value, the faster the approach of
the spike count correlation to the MRFC limit with
increasing stimulus variability. In Fig. 4 we have explic-
itly considered only variations in m (expression (2)).
However, similar behavior results from variation in k.
Namely, a smaller value of k implies a faster approach
of the spike count correlation to the MFRC limit.

3.2.2. E�aluating the intrinsic correlation
To eliminate the effect of stimulus variability on the

spike count correlation, the noise elements, rather than
the spike counts must be correlated. If the noise ele-
ments of both neurons are independent, the IC and the
noise correlation are both equal to zero. However, if

the noise elements are correlated, and if the noise
distributions depend on the stimulus value, then stimu-
lus variability will also be reflected in the noise correla-
tion, as explained in Appendix B. To correct for this
effect, several assumptions regarding the dependence of
the noise on the stimulus are necessary. Specifically,
assuming the dependence of �i(s) on �i(s) as given in
expression (2), we evaluate the normalized noise ele-
ments N� i (Section 2.2), and correlate them to obtain the
IC. Standard statistical tests can then be used to set
confidence intervals on the observed ICs (Sokal and
Rohlf, 1995).

Finally, if the IC is a function of the stimulus, and if
the stimuli vary from trial to trial, then the observed IC
reflects an average of the IC over stimulus values in
each of the trials. This is a critical point as it implies
that in general, in order to study the relationship be-
tween stimulus and IC, it is required to maintain the
stimulus constant. Nevertheless, if the IC is approxi-
mately a linear function of the stimulus (within the
relevant range of stimulus values) then the observed IC
provides a good approximation to the IC for the aver-
age stimulus value.

3.3. Low spike count

3.3.1. Expected coincidences
As described in Section 2.1.2, when the spiking prob-

abilities of both neurons, P1 and P2 are constant and
independent, the distribution of coincidences (Z) is
given by binomial (P1P2,n), where n is the number of
trials. Here, we will use Pi(sj ) to denote the firing
probability of neuron i in response to sj, the stimulus
value in trial j. The coincidence probability of neurons
i=1 and 2 in trial j is given by Qj=P1(sj)P2(sj). The
probability of observing z coincidences in n trials is
given by

P(Z=z)= �
V�Vnz

�
n

j=1

Qj
Vj(1−Qj)

(1−Vj ). (5)

In this equation Vnz is the set of all vectors with n
elements (�1, �2,.., �j, �n) so that z of the elements are
equal to 1, and the rest of the elements are equal to 0.
Thus, each vector V�Vnz describes an event (i.e. a
sequence of trials), in which a coincidence occurred in z
trials, and no coincidence occurred in the rest (i.e. in
n-z) of the trials. The probability of observing the event
denoted by V is given by the product in (5). Unlike the
case of a binomial distribution where all events V�Vnz

are equally likely, here each of these events is associated
with a different probability. The sum in (5) is over all
events in which exactly z coincidences occurred. For a
large n, and different Qj’s for different trials, the calcu-
lation of (5) is impractical. Fortunately, in this limit the
normal distribution provides a good approximation for
the probability distribution of z, namely Z�
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n(E(Z),�(Z)) (Feller, 1966, see also Baker et al., 2001).
Since the coincidences in each trial are independent of
each other, we have E(Z)=�Qj and �2(Z)=�Qj(1−
Qj) where the sums are over the trial index j.

To demonstrate the effect of a variable firing proba-
bility (resulting from varying stimuli), we display in Fig.
5 the exact and the normal approximations for the
distribution of Z under several conditions. Fig. 5A
shows the probability distribution of Z for a set of 100
trials for two neurons with identical firing probabilities
(MRFC=1). In 50 of the trials, the firing probabilities
of both neurons in each bin are given by 0.3−�, and in
the other 50 trials, by 0.3+�. The three staircase
curves correspond to �=0, 0.1, and 0.2. For example,
the leftmost curve (�=0) is for the case where the
firing probabilities are 0.3 for both neurons on all trials;
only in this case is the distribution of z truly binomial.
The other staircase curves (�=0.1 and �=0.2) repre-
sent increasing firing probability variability. On each of
the curves we superimposed the corresponding normal
approximations. The important feature of the curves in
Fig. 5A is that upon increasing firing probability vari-
ability, the probability distributions of Z shift to the
right. Another way of representing the same data is
shown in Fig. 5C where the probability of obtaining a

coincidence value higher than or equal to z is plotted.
This representation shows that high values of Z become
increasingly likely upon an increase in the firing proba-
bility variability.

Fig. 5B shows the distributions of Z when the firing
probabilities of both neurons are anti-correlated
(MRFC= −1). Specifically, in 50 trials the firing prob-
abilities are 0.3−� for one neuron, and 0.3+� for the
other. In the other 50 trials, the firing probability of
one neuron is 0.3+�, and 0.3−� for the other neu-
ron. Again, the three pairs of curves correspond to
�=0, 0.1, and 0.2. Here, the rightmost curves corre-
spond to the binomial distribution, and as the firing
probability variability is increased the curves shift to
the left. Fig. 5D shows the cumulative distributions of
Z, i.e. the probability to obtain a value of the coinci-
dence equal to or lower than z. In this case, low values
of Z are more likely when the firing probability vari-
ability is increased.

Thus, as trial to trial stimulus variability is increased,
it is increasingly likely to reject the ‘null hypothesis’ of
independence between the neurons when the assump-
tion of ‘no trial to trial stimulus variability’ is implicitly
made. When the assumption of ‘no trial to trial stimu-
lus variability’ is not warranted, the proper test for

Fig. 5. Exact and normal approximations for the distribution of coincidences (Z) under several conditions. A: Probability distribution of Z in 100
trials for two neurons with identical firing probabilities. In 50 of the trials, the firing probabilities of both neurons in each bin are given by 0.3−�,
and in the other 50 trials, by 0.3+�. The three staircase curves correspond to �=0, 0.1, and 0.2. On each of the staircase curves are
superimposed the corresponding normal approximations. B: Same as A except that here the firing probabilities of both neurons are anti-correlated.
Specifically, in 50 trials the firing probabilities are 0.3−� for one neuron, and 0.3+� for the other. In the other 50 trials, the firing probabilities
of one neuron are 0.3+�, and 0.3−� for the other neuron. C: P(Z�z) for the probability distributions in (A). Only high values of Z are plotted
in order to highlight ‘extreme’ values of z. D: P(Z�z) for the probability distributions in (B). Only low values of Z are plotted. Although the
probability distributions are defined only for integer values of Z, they were plotted as continuous curves for clarity.
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independence should involve comparison of the ob-
served value of Z to its expected distribution given the
stimulus values in each of the trials, as described above.

3.4. Predictions regarding the apparent dependence of
correlation on stimulus

In the previous sections we have considered correla-
tions between a pair of neurons characterized by a fixed
relationship between their mean response functions. In
the more general (and realistic) case, neurons may have
different and non-linear response functions over the
stimulus range. In such a situation, the correlation
between the response functions of both neurons is
different for different stimulus values. By considering
the neuronal response functions and the stimulus vari-
ability it is possible to predict the patterns of correla-
tions as a function of the stimulus value.

Let us consider two independent neurons (IC=0),
i=1,2 with mean response functions �i(�,�)=Ai+�B
cos(�−�i) sp/s where � and � are random variables
characterizing the stimulus, and �i, Ai and Bi are con-
stants. Note that here the stimulus is two dimensional,
s= [�,� ]. The spike counts of the neurons are normally
distributed with n(�i(�,�),�i(�,�)). Furthermore, follow-
ing expression (2) we again use �i(�,�)=ki�i(�,�)mi,
with mi and ki constants. Such response functions may
describe arm related motor neurons in M1 with mean
responses that are tuned to direction �i and scaled by
the velocity � ; alternatively �i and � may be interpreted
as the orientation and the contrast of a visual stimulus.

Consider now a trial which requires a hand move-
ment to direction �n (the ‘intended’ direction) per-
formed with velocity �. Suppose that upon each
repetition of the trial, the direction of motion deviates
from �n by ��n, with a different ��n for different trials.
If, around �n, the slopes of the mean response functions
(�1,�2) with respect to � are of opposite sign, then
random deviations from �n will cause negative correla-
tions. In contrast, if the slopes are of similar sign, then
variations in direction will induce positive correlations.
The exact magnitude and sign of the correlations, for
each given direction �n, are a function of ��n (i.e. the
variability of movement direction in that specific direc-
tion) as well as the ratio of the slopes of the two
response functions at �n. Movements may also vary in
velocity but not in direction. In this case, stimulus
related correlation still occurs, but its sign and magni-
tude are determined by the derivatives of the response
functions with respect to the velocity (�) rather than
direction (�).

To illustrate these points, we have simulated the
responses of two neurons, with response functions of
the form given above, using A=50 sp/s, B=40 sp/s,
k=1, m=0.3, �1=0, �2=1 radian, and intended di-
rections �n in the range [0,�] radians (sampled in steps

Fig. 6. Tuning of spike count correlation as a result of stimulus
variability. Simulation of two independent neurons with normal spike
count distributions: n(�i(�,�),�i(�,�)0.3) where �1(�,�)=40+�50
cos(�) sp/s and �2(�,�)=40+�50 cos(�−1) sp/s; � is specified in
radians. A: Response functions of both neurons as a function of � for
�=1. B: Correlation coefficient between the spike counts as a func-
tion of intended direction �n with variable directions in each trial. For
each intended direction �n, the actual directions were randomly
selected from a uniform ditribution in the range [�n−0.2,�n+0.2]
radians. The value of � was set at 1 for all intended directions. C:
Correlation coefficient between the spike counts as a function of
intended direction �n with variable velocities in each trial. For each
intended direction, � was uniformly sampled from the continuous
range [0.8,1.2], whereas the directions were set constant at �n. In both
cases, 200 trials were simulated for each intended direction �n. The
intended directions were obtained from the range [0,�], sampled in
steps of 0.0654 radians.

of 0.0654 radians). The response functions of both
neurons are shown in Fig. 6A as a function of �n for
�=1. Simulating the responses of both neurons in 200
trials, we calculated the correlation coefficient between
the spike counts over a 1 s time interval as a function of
�n.

In the first simulation, we simulated responses to
variable directions (Fig. 6B). That is, each point on the
� axis corresponds to an intended direction �n, with
directions randomly selected from a continuous uni-
form distribution in the range [�n−0.2, �n+0.2] radi-
ans. The value of � was set at 1 for all intended
directions. The curve in Fig. 6B shows the correlation
coefficient of the simulated responses as a function of
the intended movement direction �n. In the second
simulation, velocities (but not directions) varied from
trial to trial. In each intended direction, v has been
uniformly sampled from the continuous range [0.8, 1.2],
while the directions were set constant at �n. The curve
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in Fig. 6C shows the correlation coefficient between the
simulated spike counts. Examination of the correlations
in Fig. 6B and 6C shows that the sign of the correla-
tions is determined, as expected, by the product of the
derivatives of the response functions with respect to
direction and velocity, respectively.

Of course, more complex patterns of correlation as a
function of stimulus value are expected when both
directions and velocities, and possibly other parameters,
vary from one trial to another. In addition, in these
simulations, the stimulus variability (in either � or �)
was identical for all intended directions �n. Had the
variability been different for different �n, we would
observe more complex relationships between the corre-
lation and the stimulus.

4. Discussion

In this report we have argued that stimulus variabil-
ity can cause apparent neuronal correlation or syn-
chrony. The main goal of our analysis has been to
describe the qualitative, rather than the quantitative,
effects of stimulus variability on the observed spike
count correlation. To demonstrate the possible out-
comes of stimulus variability, we considered simulated
data sets (Section 3.1 and Section 3.4) with quite large,
yet not unrealistic, stimulus variability. The dependence
of the observed correlation on the magnitude of stimu-
lus variability was studied in further detail in Sections
3.2. and 3.3. In general, the applicability of our conclu-
sions to any given data set depends on the exact form
of the spike count distributions, as well as the stimulus
values in each of the trials.

4.1. Related pre�ious studies

The dangers associated with the implicit assumption
of various physiological studies according to which all
trials are identical, has already been addressed by
(Brody, 1999a,b). In these reports Brody points out two
possible scenarios which can result in effects similar to
those described here. Namely, it has been shown that
co-variations of either neuronal excitability (on a slow
time-scale, i.e. approximately constant excitability dur-
ing a single trial) or of response latency, can result in
artifactual spike count correlations. In the present re-
port however, the focus is on one common mechanism,
namely stimulus variability, which can account for such
trial to trial variability. We have attempted to show
that changes in trial to trial variability (either in the
course of time within a trial, and/or across different
conditions) may assume various forms, each associated
with a different pattern of the resulting spike count
correlations. Focusing on a specific mechanism, we
were able to suggest methods to eliminate the effects of

trial to trial variability. Although the effects mentioned
here are not likely to be expressed as slow time scaled
excitability changes, they may well result in variations
in latency of neuronal response, as described by Brody.
In this respect Brody’s approach and ours are
complementary.

In Section 3.4 we have shown how stimulus variabil-
ity may account for apparent stimulus dependent corre-
lations. Theoretical accounts of stimulus dependent
correlations and their dependence on neuronal tuning
functions have already been described by others (Ben-
Yishai et al., 1994; Pouget et al., 1998). However, while
in those reports correlations were shown to result from
properties of the network architecture, our arguments
imply that stimulus dependent correlations may occur
without any direct connectivity between neurons.

4.2. Assumptions regarding the neuronal response
functions

To demonstrate how the intrinsic correlation can be
evaluated from spike counts and the stimulus values,
we have used rather simple neuronal response functions
(Section 2.2). Specifically, we have assumed that neu-
ronal responses can be described as step functions with
zero temporal delay following stimulus presentation. In
reality, neuronal response functions are more complex.
Responses to a given stimulus are generally dynamic,
the responses to a sequence or a combination of stimuli
is in general not a linear sum of the responses to each
of the single stimuli, and time delays not only exist, but
may also depend on the value of the stimulus
(Schwartz, 1994). Therefore, our proposed method for
estimating the neuronal response functions should be
regarded as a first approximation. Whether this first
approximation is adequate depends on the actual (un-
known) response functions. Since sample sizes (i.e.
number of trial repetitions) are typically limited, and
the dependence of neuronal response functions on
multi-dimensional stimulus values is complex, it seems
hard, if not impossible, to obtain these functions ex-
actly. Nevertheless, we believe that application of even
the simple methods suggested here, to various candidate
stimuli (i.e. to all stimuli recorded during an experi-
ment) can advance the goal of disambiguating the IC
from that caused by stimulus variability.

4.3. Implications for designing and interpreting
experiments

It is obviously preferable to record as many stimuli/
actions as possible, thus increasing the reliability of the
estimates of the neuronal response functions. During
trial performance however, it is critical to minimize the
variability of all stimulus and action dimensions to
which the neurons may respond. While this goal can
never be fully attained, it should always be pursued.
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Suppose that after taking into account the variability
of all stimuli and actions recorded during an experi-
ment, nonzero IC still prevails. Suppose also that the
observed IC is modulated as a function of time or of
the behavioral condition. What do these correlations
actually reflect? We can think of two possible scenarios
regarding the nature of the correlations. In the first, the
causal scenario, the activity of one of the neurons (or
both) is effecting the activity of the other. These could
occur via direct synaptic interactions, or by one or
more intermediate relaying neurons. Such an interac-
tion could only be confirmed (or refuted) if a test of
causality between the activities of both neurons is
performed.

In the second scenario, it is a common source which
affects both neurons, so that no causal relationship
exists between the neurons. Naturally, the inputs from
this common source must vary in order to induce
correlation between the neurons. The interesting ques-
tion which then remains concerns the nature of the
common source. Specifically, it may be the variability
of some stimulus or action not recorded during the
experiment that is responsible for the observed correla-
tion. Only if there is a good reason to believe that the
variability of all relevant stimuli or actions has been
accounted for, are we in a position to conclude that it
is some internal �ariable (i.e. not a sensory input or a
motor output) whose variability induces the
correlations.

4.4. Generalization

Throughout this paper we have considered a situa-
tion where two neurons are responsive to a common
stimulus. However, other scenarios where stimulus vari-
ability may play a role occur when the two neurons are
related to different stimuli, and these stimuli are differ-
entially correlated with each other in different contexts.
To illustrate, consider two neurons, each of which is
associated with a single muscle. Now, consider two
actions, one which demands coordination between the
muscles, so that their activities are correlated, and
another which does not require coordination, so that
the muscles are not correlated. If upon repetitions of
each of the actions, the muscle activities vary, correla-
tions between the neuronal activities would appear
during the first action, but not during the second. In the
first action, where both muscles are correlated, they are
functionally equivalent to a single stimulus effecting
both neurons. In the second action, the muscles are not
correlated, and therefore no common stimulus effects
both neurons. In this example, then, it is not the
variability of a single stimulus, but rather the covari-
ance of two stimuli which must be considered. Phrased
more generally, any interpretation of neuronal correla-
tions must take into account the statistics of all the
stimuli to which the neurons are related.

To summarize, our central claim is that while
changes in correlations might reflect changes in direct
(causal) interactions between neurons, they may also
reflect the individual response properties of neurons to
varying stimuli. While this view may seem pessimistic,
the situation is not as hopeless as it might seem: If the
variability of all stimuli to which the neurons in ques-
tion are known to respond have been accounted for,
and if correlations still remain, then either: (1) The
correlations reflect a causal interaction between the
neurons, or (2) The correlations result from variability
of some common stimulus which is not known to
influence the neurons. Whichever of the above is the
case, the observed correlation reflects something be-
yond what is known about the neuronal response func-
tions and are therefore interesting.
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Appendix A. Spike count correlation in the high count
limit

From the description of Xi in expression (1) it follows
that the correlation coefficient between the spike counts
of two neurons (1 and 2) is given by

CC(X1X2)=
cov(�1+N1,�2+N2)

�var(�1+N1)�var(�2+N2)
(A1)

=
cov(�1,�2)+cov(�1,N2)+cov(�2,N1)+cov(N1,N2)

�var(�1+N1)�var(�2+N2)

where in the second equality we have used the identity
cov(A+B,C+D)=cov(A,C)+cov(A,D)+cov(B,C)+
cov(B,D) with A, B, C, and D any random variables.
Recall that for any random variables A, B, and C

cov(A,B)=�cov(A,B�C)�+cov(�A�C�, �B�C�). (A2)

Here �A�C� is the expected value of A for a given
value C, and �cov(A,B�C)� is the expected value of the
covariance of A and B over all values of C. Similarly,
cov(�A�C�,�B�C�) denotes the covariance of A and B,
given C, over all values of C. Using (A2), and since the
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expected value of Ni(s) is, by definition, zero for any
value of s, we obtain for all combinations of i=1,2 and
j=1,2

cov(�i,Nj)=�cov(�i(s),Nj(s)�+cov��i(s),0�=0 (A3)

so that the two middle terms in the numerator of A1
vanish. Also, from (A3): var(�i+Nj)=var(�i)+
var(Nj) +2cov(�i,Nj)=var(�i)+var(Nj). Hence, (A1)
becomes

CC(X1,X2)=
cov(�1,�2)+cov(N1,N2)

�var(�1)+var(N1)�var(�2)+var(N2)
(A4)

Our next step is to express the Ni’s in terms of the
normalized noise N� i, as given by expression (2). To
express the variance of Ni note that by substituting (2)
into (A4) and recalling that var(A)=�var(A�C)�+
var(�A�C�) we find

var(Ni)=�var(Ni �s)�+var �Ni �s�=�� i
2(s)�+var(0)

=ki
2��i(s)2mi�. (A5)

To express the covariance of N1 and N2 in terms of
the normalized noise we use (A2), finding

cov(N1,N2)=�cov(N1,N2�s)�+cov(0,0) (A6)

=�cov(k1�1(s)m1N� 1,k2�2(s)m2N� 2)�

=k1k2���1(s)m1N� 1�2(s)m2N� 2�s�

where the inner brackets �...�s denote the expected
value for a given value of s, and the outer brackets �...�
denote the expected value over all values of s. Next, we
apply (A2) to �1 and �2, obtaining

cov(�1,�2)=�cov(�1,�2�s)�+cov(��1�s�,��2�s�)

=cov(�1(s),�2(s)). (A7)

Finally, we substitute (A5), (A6) and (A7) into (A4)
to obtain:

CC(X1,X2)=
cov(�1(s),�2(s))+k1k2���1(s)m1�2(s)m2N� 1N� 2�s�

�var(�1(s))+k1
2��1(s)2m1��var(�2(s))+k2

2��2(s)2m2�

Appendix B. Effect of stimulus variability on noise
correlation

The correlation coefficient between the noise ele-
ments is given by:

CC(N1,N2)=
cov(N1,N2)

�var(N1)�var(N2)
.

Substituting (A5) and (A6) for the noise variance and
covariance, respectively, we obtain:

CC(N1,N2)=
k1k2���1(s)m1N� 1�2(s)m2N� 2�s�
�k1

2��1(s)2m1��k2
2��2(s)2m2�

=
���1(s)m1N� 1�2(s)m2N� 2�s�
���1(s)2m1����2(s)2m2�

.

If the IC, �N� 1N� 2�, is independent of stimulus value
then

CC(N1,N2)=
��1(s)m1�2(s)m2�

���1(s)2m1����2(s)2m2�
�N� 1N� 2�

=��N� 1N� 2�

where the second equality serves to define the ‘scale
factor’ �. Note that all expected values involving �i(s)
elements are calculated over all values of s, whereas
�N� 1N� 2� denotes the expected value for any value of s.
The maximal value of � is 1 (when �1(s)m1=C�2(s)m2

for some constant C) and its minimal value is 0. Thus,
the IC is an upper bound to the noise correlation. Only
when �=1, and/or �N� 1N� 2�=0, are the IC and the
noise correlation identical.
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