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Abstract

We consider situations in which there is a change point in the activity of a cell, that is, some time after an external event the firing

rate of the cell changes. The change can occur after a random delay. The distribution of the time to change is considered unknown.

Formally we deal with n random point processes, each of these is an inhomogeneous Poisson process, with one intensity until a

random time, and a different intensity thereafter. Thus, the change point is not explicitly observed. We present both a simple

estimator and the non-parametric maximum likelihood estimator (NPMLE) of the change point distribution, both having the same

rate of convergence. This rate is proved to be the best possible. The extension of the basic model to multiple processes per trial with

different intensities and joint multiple change points is demonstrated using both simulated and neural data. We show that for

realistic spike train data, trial by trial estimation of a change point may be misleading, while the distribution of the change point

distribution can be well estimated.
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1. Introduction

The synchrony between neural activity and external

event is a major tool in neurophysiological studies of the

brain. The data is typically analyzed using the Peri-

stimulus time histogram (PSTH). Different trials are

aligned with respect to the time of the external event and

the average change over many trials of the intensity of

the neural activity is observed. However, using this

technique, one cannot distinguish between a smooth

transition in any single trial between two regimes on one

hand, and a sharp transition at each trial, but with a

jitter in the transition times between the trials on the

other.
Technically, we consider a situation in which copies of

a multivariate point process on a fix interval are

observed. The intensity of the process is not fixed along

the interval but changes once or more. The time of the

change points may vary from copy to copy.

In this manuscript the problem is treated in two

different ways: both as a formal statistical problem and

as a tool for the analysis of neural data. The biological

question behind the statistical discussion is the extent to

which the activity of a specific group of neurons in the

monkey’s brain is synchronized with the external

behavior of the animal. Here the model is extended to

more than one change point and to multivariate

counting processes. The estimation procedure assumes

that the change points actually exist, and that the

different components of the multivariate process are,

given the change points times, independent inhomoge-

neous Poisson processes. These assumptions are not

necessarily valid in all situations, but we argue that they

are reasonable for our examples. The different exten-

sions of the model are applied to real and simulated

data.
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Mathematically, we analyze a problem in which it is

assumed that there is only one change point per trial,

whose time is a random variable distributed according

to a distribution function G . For each trial, we assume
an inhomogeneous Poisson process that has a constant

intensity l0 until the change point, and a constant

intensity l1 thereafter. The actual time of the change

point is not observed explicitly. The parameters G , l0

and l1 are not known. The information bounds and the

efficient score functions are given. In a nutshell, we have

an explicit expression for the score function only in a

relatively trivial case. The maximum likelihood estima-
tor as well as simple estimators are presented. In

particular, the distribution function of the time to

change can be estimated using a simple monotone

regression estimator. The rates of convergence of these

simple estimators are optimal.

The change point model for a single Poisson process

(and a single trial) was discussed in a few earlier papers,

e.g. Matthews et al. (1985), Akman and Raftery (1986)
and the standard Bayesian analysis is discussed in

Raftery and Akman (1986). The change point metho-

dology was discussed in the context of neuron activity

by Commenges and Seal (1985), where the change point

was estimated for each trial separately, which may be

difficult in some applications. A typical firing rate for a

neuron is a spike every 20�/200 ms on the average.

Hence there is an error of a few hundred milliseconds in
the estimation of a single change point. This is too crude

for a typical behavioral task. In our simulation, we

present an example, where the change point distribution

can be estimated, reasonably well, while it is almost

impossible to locate the individual change points. Note

however, that the brain system observes many cells at

the same time, and, therefore, can detect the change

point exactly, even when it is not possible in the
experimental setting where only one or at most a few

cells can be observed simultaneously.

Our point of view is akin to hierarchical Bayes or,

closer, to the empirical Bayes formulation of the

problem. Previously, empirical Bayes models were

employed by Joseph and Wolfson (1992) and Bélisle et

al. (1998) in the context of change point detection for

spike data. See a relevant recent discussion of empirical
Bayes procedures in Efron (1996). Leaving philosophy

aside, we consider the problem as a semiparametric

mixture model, Bickel et al. (1993) and Robins and

Ritov (1997). The typical neuronal experiment in which

the activity of single cells is recorded involves a repeated

task in which the animal is reacting to external cues. The

experimenter tries to understand how the cells activity is

related to different sensory and motor events. The
distribution of the change point time may be interesting

in particular in situations where it is not known a priori

with which external event the neuronal activity is

synchronized. In a typical experiment, an observed

change in the neurons activity may be related to the

visual cue that the monkey receives, to the eye move-

ment that follows, or to the movement of his arm. The

times of these events are recorded, and we may try to
test to which of them the activity is better synchronized

(Seal et al., 1983; Seal and Commenges, 1985; Schwartz

et al., 1988; Montgomery, 1989; Crutcher and Alexan-

der, 1990; Romo and Schultz, 1990). In this paper, a

single change point was located for each neuron and

task condition using a formal hierarchical Bayesian

method. Our method was applied to other data set as

presented in Ritov et al. (1997). The model analyzed by
Bélisle et al. (1998) is similar to ours, except that it was

analyzed using Bayesian tools, both in the model

formulation and in the algorithms, they used Gibbs

sampler, while we used a non-iterative simple estimator

and the EM algorithm to calculate the maximum-

likelihood estimator. Moreover, we extend their model

to examples of multiple change point and multiple cells.

Finally, we give the theoretical justification to the
technique used.

2. Methods

Our empirical data were recorded from two awake

vervet (green) monkeys (Cercopithecus aethiops

aethiops ). The monkeys were trained to perform a

visual-motor task with two behavioral paradigms, see
details in Raz et al. (2000). Briefly, the trials were as

follows. Four seconds after the end of the previous trial

the program started checking if the central key is

touched. In most cases, the monkey would have touched

the key during the inter-trial period. If not, the program

waited until the key has been touched. Immediately (less

than 1 ms) after it touched the key, the ‘get ready’ LED

was turned on. After a variable delay (3�/6 s), one of the
two peripheral target keys was illuminated for 0.25 s,

and the monkey got a trigger signal after another

random delay of 1, 2, 4, or 8 s. At this point the

monkey was supposed either to release the central key

and touch the target key (the ‘GO’ paradigm), or to keep

touching the central key (the ‘NO-GO’ paradigm). If the

monkey did this, it was rewarded with 0.15 ml of juice.

After four correct trials, there was a 4 s signal instruct-
ing the monkey to change paradigm from ‘GO’ to ‘NO-

GO’ or vice versa. The monkey was fully trained before

recording started. In each recording session, the activity

of two to eight single cells in the basal ganglia was

recorded. In a single recording session, a few hundred

trials were recorded. Typically the number of valid

records from any single cell is between a few tens to a

few hundred trials.
The cells whose activity we analyze are from the

external segment of the globus pallidus (GPe). These

cells are characterized with a fast tonic rate (a few tens
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of spikes per s), and with unexplained short intervals in

which they are silent (DeLong, 1971; DeLong and

Georgopoulos, 1981). It looks as if the cells behave

independently, Nini et al. (1995) and Raz et al. (2000).

The exact function and the mode of activity of the basal

ganglia are not known. We assume that a model in

which some cells switch abruptly to a different mode is

reasonable.

3. Results

3.1. The model

The data used for the analysis can be summarized as

follows. We measure the activity of K ]/1 cells during n

trials. For each trial we record the activity of each of the

Fig. 1. The spiking activity of a GPe cell. The monkey released the central key at time 0. (a) The raster plot; (b) the PSTH; (c) the PSTH smoothed

and a monotone regression estimate of intensity.
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cells during a window synchronized on a given activity

of the monkey during the trial.

Formally, the observations are at discrete time, a , a�/

1, . . ., b for some a and b . We assume that for each trial

i , i�/1, . . ., n , there are multiple change points a B/

Ti 1B/. . .TiM B/b , for some M ]/1. We observe for

each trial K counting processes. The processes are

independent homogeneous Poisson processes between

the common change points. In other words, for all i�/1,

. . ., n , Ni 1, . . ., NiK are independent given Ti 1, . . ., TiM .

The values Nik (t ), i�/1, . . ., n , k�/1, . . ., K , t�/a , . . ., b ,

represent the total number of spikes fired by the k -th cell

during the time interval from a to t : Nik(t)�at
s�a Nik(s):

We assume that the Bernoulli random variables Nik(a),

. . ., Nik (b ) are independent given Ti 1, . . ., TiM , and

P (Nik (t)�/1jTi 1, . . ., TiM )�/1�/P (Nik (t)�/0jTi 1, . . .,

TiM )�/Pkm , Tim 5/t B/Ti ,m�1, m�/0, . . ., M , where,

formally, Ti 0�/a and Ti ,M�1�/b�/1. In other words,

the data are a collection of independent Bernoulli

random variables, whose probability of success depend

on the cell and the random time interval to which they

belong. The latter is defined in terms of the change point

times. The Bernoulli model is typically not valid, as the

cells have refractory periods, however, it can be a valid

approximation if the refractory period is much shorter

than the mean inter spikes time.

We need to restrict the structure of the joint distribu-

tion of the change point times, because of statistical and

computational considerations. We considered two alter-

native assumptions:

Assumption 1. Ti 1, . . ., TiM are independent with

distribution functions G1. . .,GM , respectively. In parti-

cular, the supports of these distributions are mutually

exclusive.

Or

Assumption 2. Ti 1, Ti 2�/Ti 1, . . ., TiM�/Ti ,M�1 are

independent with distribution functions G1. . .,GM , re-

spectively.

Assumption 1 describes a situation in which all

change points are relative to the synchronizing event,
while Assumption 2, for M�/2, describes a situation in

which the cell reacts to the external event at time Ti 1 for

a duration of Ti 2�/Ti 1.

Practically, the algorithm for the second case was

useful only for M�/2: a random length first period, then

an intermediate interval with a random length, and

thereafter a final period. The algorithm can be too slow

for any larger M .
The likelihood function to be maximized under

Assumption 1 is:

L(fgm(t)gm�1;...;M;t�a;...;b; fpkmgk�1;...;K ;m�1;...;M)

�
Yn

i�1

X
aBt1B���BtMBb

YM
m

gm(tm)
YK

k�1

Fig. 1 (Continued)
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�
YM�1
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p

Ptm

t�tm�1
Nik(t)

km (1�pkm)
tm�tm�1�1�

Ptm

t�tm�1
Nik(t)

where t0�/a and tM�1�/b , and gm(t) is the point mass

at t of the m -th distribution.

It is similar under Assumption 2:

L(fgm(t)gm�1;...;M;t�a;...;b; fpkmgk�1;...;K;m�1;...;M)

�
Yn

i�1

X
aBt1B���BtMBb

YM
m

gm(tm�tm�1)
YK

k�1

�
YM�1

m

p

Ptm

t�tm�1
Nik(t)

km (1�pkm)
tm�tm�1�1�

Ptm

t�tm�1
Nik(t)

where, t0�/a and tM�1�/b .

Fig. 2. Change point distribution of the single cell described in Fig. 1. (a) the MLE p.d.f.; (b) the MLE c.d.f. (stars) compared with the c.d.f. as

estimated by the monotone regression of the PSTH (solid line).
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3.2. The algorithms

Suppose the change point times, Tij , i�/1, . . ., n , j�/1,

. . ., M , were observed. Then, the distribution of the time

to the change points could be estimated easily by the

empirical distribution of the corresponding variables,

and the probabilities, p1, . . ., pM could be estimated by

the corresponding means in the sample. This makes the

model a typical missing data model. Note that by

missing we do not necessarily mean that data was lost.

It may that the model can be derived as a simpler model

in which some of the variables are unobserved. A

standard method to maximize the likelihood in models

with missing data is the EM algorithm, Dempster et al.

Fig. 3. One GPe cell with seemingly two change points. (a) Raster plot; (b) PSTH.
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(1977). Generally speaking, when the EM algorithm is

used, it is assumed that besides the observed data there

are unobserved data, and we iterate between computing

expectation of the log-likelihood of the complete data

over the conditional distribution of the unobserved

random variables giving the observed ones (the E -steps),

and maximizing this expectation (the M -steps).

We used two versions of the EM algorithm for

computing the (approximate) maximum likelihood esti-

mators (MLE) of the different parameters. The follow-

ing notation is used. Hat above a parameter denotes an

estimator. The distributions are approximated by dis-

crete distributions have rm , m�/1, . . ., M support

points. Note that both M and the rm ’s are prescribed

Fig. 4. One GPe cell with two dependent change points. (a) The estimated distribution of the first change point (0 is the RELEASE time); (b)

estimated distribution of the time between the two change points.
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by the user. The discrete distributions of the change

point times are denoted by G , and their probability

functions are denoted by g . The EM algorithm for
multiple independent change points was as follows:

Algorithm 1.

1) Initial step: Set l�/0, ĝ(l)
m (j)�1=rm; j�/1, . . ., rm ,

m�/1, . . ., M , and p̂(l)

km
�(n(b�a�1))�1an

i�1 Nik(b);

k�/1, . . ., K , m�/0, . . ., M . Let zm(1), . . ., zm(rm ) be

the support point of the distribution of the m -th

change point, m�/1, . . ., M .

2) E-step: Compute the likelihood function that the

changes of the i-th trial happened at ji ,. . .jM :

Li(j1; . . . ; jM )

Fig. 5. Two GPe cells. (a) Raster plot; (b) the PSTH’s for the two cells; (c) smoothed PSTH’s.
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�
YK

k�1

YM
m�1

�
p̂

(l)
k;m�1(1 � p̂

(l)
km)

(1 � p̂
(l)
k;m�1)p̂(l)

km

�Nik(zm(jm))

�
�

1 � p̂
(l)
k;m�1

1 � p̂
(l)
km

�zm(jm)

;

for i�/1, . . ., n , 15/jm 5/rm , m�/1, . . ., M . Com-
pute the a posteriori probabilities for the vector of

the i-th change point times:

Pi(j1; . . . ; jm)

�
Li(ji; . . . ; jM)

QM

m�1 ĝ(l)
m (jm)Pr1

j?i�1 . . .
PrM

j?M
Li(j?1; . . . ; j?M)

QM

m�1 ĝ
(l)
m (j?m)

3) M step: Set l�/l�/1. Update ĝ(l)

1
; . . . ; ĝ(l)

M
to be the

marginal distributions of n�1 an
i�1 P(�): Update for

k�/1, . . ., K and m�/0, . . ., M :

4) Convergence check: Stop if the number of iterations

exceeds the pre-decided tolerable number or the

convergence criterion error below was less than the

pre-decided value. Otherwise return to the E -step.

The algorithm for dependent change points (or

independent start and duration of an intermediate

period) was as follows:

Algorithm 2.

1) Initial step: Like the initial step of Algorithm 1 with

M�/2.

2) E-step: Let M�/2. Let z1(1), . . ., z1(r1) be the

support of the distribution of the first change point,

and let t2(1), . . ., t2(r2) be the support of the

distribution of the time between the two change

points. Compute the likelihood function for the i-th

trial:

Fig. 5 (Continued)

p̂
(l)
km�

Pn

i�1

Pr1

j1�1 . . .
PrM

jM�1 Pi(j1; . . . ; jM)(Nik(zm�1(jm�1)) � Nik(zm(jm)))Pn

j�1

Pr1

j1�1 . . .
PrM

jM�1 Pi(j1; . . . ; jM)(zm�1(jm�1) � zm(jm))
(3:1)
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Li(j1; j2)�
�

p̂
(l)
k0(1 � p̂

(l)
k1)

(1 � p̂
(l)
k0)p̂(l)

k1

�Nik(z1(j1))

�
�

p̂
(l)
k1(1 � p̂

(l)
k2

(1 � p̂
(l)
k1)p̂

(l)
k2

�Ni;k(z1(j1)�z2(j2))

�
�

1 � p̂
(l)
k0

1 � p̂
(l)
k1

�z1(j1)�1 � p̂
(l)
k1

1 � p̂
(l)
k2

�z1(j1)�z2(j2)

Define Pi as in Eq. (3.1).

3) M-step: Set l�/l�/1. Update ĝ
(l)
1 ; ĝ

(l)
2 to be the two

marginals of n�1 an
i�1 P(�): Update for k�/1, . . ., K ;

p̂
(l)
k0�

Pn

i�1

Pr1

j1�1

Pr2

j2�1 Pi(ji; j1)Nik(z1(j1))Pn

i�1

Pr1

j1�1

Pr2

j2�1 Pi(ji; j1)(z1(j1) � a)

p̂
(l)
k1�

Pn

i�1

Pr1

j1�1

Pr2

j2�1 Pi(ji; j1)(Nik(z1(j1) � z2(j1)) � Nik(z1(j1)))Pn

i�1

Pr1

j1�1

Pr2

j2�1 Pi(ji; j1)z2(j2)

Fig. 6. Two GPe cells with seemingly one change point. (a) MLE of p.d.f. of the change point; (b) cell 9, MLE of the c.d.f., and the estimated based

on the monotone regression; (c) cell 13, MLE of the c.d.f., and the estimated based on the monotone regression.
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p̂
(l)
k2�

Pn

i�1

Pr1

j1�1

Pr2

j2�1 Pi(ji; j1)(Nik(b) � Nik(z1(j1) � z2(j2)))Pn

i�1

Pr1

j1�1

Pr2

j2�1 Pi(ji; j1)(b � z1(j1) � z2(j2))

4) Convergence check: Stop if the number of iterations

exceeds the pre-decided tolerable number or the

convergence criterion error below was less than the
pre-decided value. Other wise return to the E-step.

In general, the EM algorithm may be very slow. In

our simulation it was reasonably fast for the single

change points examples. It took around 1 min on a 133

MHz PC. It was quite slow for some of our extensions

where there were more than one change point.

The stopping time was defined as the minimum

between l�/500 and the first l such that the first time

the difference between the estimates in two consecutive

iterations is measured by:

PM

m�1

PK

k�1 ½p̂
(l)
km � p̂

(l�1)
km ½PM

m�1

PK

k�1 pkm

�
Xr

j�1

½ĝ(l)
j �g

(l�1)
j ½

B4�10�6; (3:2)

where p̂
(l)
km and ĝ

(l)
j are the estimators after l cycles of the

algorithm.

In the first example the algorithm converged after ten

iterations. It converges after nine in the case of the third

example. On the other hand, it stopped in the second

example after 500 iterations, when the first term of error

was equal to 2.5�/10�7 and the second term was equal

to 1.4�/10�4.

3.3. Examples

3.3.1. One cell and one change point

The first record we discuss is of a GPe cell. We

consider the interval starting 600 ms before the time the

monkey released the central key (RELEASE) and end-

ing 500 ms after this event. The raster plot is given in
Fig. 1a, where each horizontal line of dots represents a

single trial, and each dot denotes a spike at the trial and

time relative to the synchronizing event, as given by its

coordinates. The same data is summarized in Fig. 1b by

the Peri stimulus time histogram (PSTH). Here we plot

the total number of spikes (over all the trials) in each 1

ms interval, relative to the RELEASE time. The vertical

axis is scaled to denote the intensity (in spikes per s). The
average intensity is 57.8, or, on the average, a spike

every 17.3 ms. The PSTH is smoothed in Fig. 1c with a

Gaussian kernel with bandwidth of 4 ms. On the same

graph, the PSTH is smoothed also by a monotone

regression estimator. We can observe from these figures

that the intensity in decreasing. The transition from high

to low average intensity, as can be observed from the

PSTH, is smooth. A more detailed observation of the
raster plot shows that in each trial the transition

between the two periods is quite abrupt, but the change

time varies from trial to trial. One possible interpreta-

tion of Fig. 1b or c, is that a change is happening before

or at time �/200 ms, and there after intensity is

decreasing during approximately 200 ms before it

stabilized again. However, this interpretation of the

PSTH is wrong in view of the raster plot. Our analysis
will model this exactly. In this example and in the other

two examples, there is no need for a sophisticated test to

verify that the intensity is not constant. Formally, we

Fig. 6 (Continued)
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considered a t-test for comparing the total count in the

first 550 ms to the total count of the second half. The t-

statistic has a value of 14.3 (P B/0.001).

The estimated p.d.f. and c.d.f. of the change point

distribution are shown in Fig. 2. It can be observed that

the lower intensity period starts in most trials before the

actual release, but the actual time varies between trial to

trial.

3.3.2. Two change points

We consider now a second GPe cell from the same

recording session as the cell analyzed above. The raster

plot and the PSTH are given in Fig. 3. As can clearly be

seen from the PSTH, a simple change point model

cannot fit the data. However, we can try to fit a model

with two change points. The fact that there is an

intermediate period with higher intensity can be verified

Fig. 7. Simulated data: (a) the Raster plot; (b) PSTH; (c) smoothed PSTH.
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simply by considering the interval of length 1200 ms

around RELEASE. We divided the interval into three

equal parts and counted the number of spikes in each

sub-interval. The P -value of the t-test that compare the

two extreme sub-intervals is 0.7, while the t -test that

compares the first and second sub-interval has an

apparent P -value of 10�8.

A model in which the width of the interval is

independent of its initial time was fitted to the data.

That is, we assumed that there are i.i.d. pairs (Ti1,Ti2),

i�/1, . . ., n , such that Ti 1 and Ti 2�/Ti 1 are independent,

and the intensity of the process is l1, l2 and l3, for t 5/

Ti 1, ti 15/Ti 2, and t �/Ti 2, respectively. The support of

the distribution was fitted by eye, to be as wide as

possible. Thus the support of the first change point was

in the range of �/300 to �/50 ms, while the width of the

second period was restricted to be in the range of 50�/

450 ms. The results obtained from applying Algorithm 2

to these data are given in Fig. 4. Note that the p.d.f. is 0

at most points. The first change point is mainly

distributed between 250 and 150 ms before RELEASE.

The width of the high intensity period was found to be

mostly around 240 ms, but with probability of approxi-

mately 0.25 it got the maximal value that was permitted,

as if some in a quarter of the trial the second change

point is missing. Note that the probability mass assigned

by the estimator is quite negligible on most of the

permitted support points. In fact, only in six out of the

26 support points of the first distribution, and in four

out of the 41 support points of the second distribution,

the algorithm assigned a probability larger than 0.001.

To check the reliability of the estimation procedure,
we introduced a 100 ms jitter. That is, each spike train

was shifted by a random time distributed uniformly

between �/50 and 50 ms. The spread of the distribution

of the first change point was increased (although, less

than could be expected), while the distribution of the

second change point remained almost the same as

expected (since the time between the two change points

was not expected to change by the random shift). One
can judge from the shape of the estimated distribution

and the effect of introducing the jitter, that either the

change point model is not appropriate to this cell, or a

much larger sample is needed for a stable estimator.

3.3.3. Two cells with one change point

We consider now a record of two GPe cells of the

second monkey. (This monkey was trained for some-

what simplified experiment with only the ‘GO’ para-

digm). We observe two cells around the RELEASE

time. The data is exhibited in Fig. 5. There are 44 valid
trials.

It seems that the two cells behave similarly. Clearly,

the processes are not homogeneous. Formally, we

calculated a t-statistic that compared the number of

spikes in the first half with the number in the second half

of the segment. We obtained the values of 9.1 and 7.2

(P B/0.001), respectively, for the two cells. Marginally,

for each cell we assume the same model as above. We
assume, however, that the two processes have the same

change point, this change point may vary from trial to

trial, and the cells are independent given this change

Fig. 7 (Continued)
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point. This assumption seems to be plausible: we applied

the algorithm to the two neurons independently. The

root-mean-squares distance between the two estimated
p.d.f.’s (one for each cell) was 0.07. The correlation

coefficient between the two vectors of a posteriori

expected values of the change point times was 0.46.

The estimator is given in Fig. 6. In Fig. 6b and c we

compare the MLE estimate of the distribution function

of the joint change point to the separate estimates based

on the monotone regression of the corresponding

PSTHs. These graphs show that the assumption of the
existence of a joint change point is reasonable.

3.3.4. Simulation: multiple processes and change points

We continue in our generalization. This time we

simulated 100 trials in which two neurons are observed.

The two cells have the same change points, but are

independent otherwise. Three change points were simu-

lated. The change point times were independent and

with different supports. The distributions of the change

points were gamma with a scale parameter 2 and shape

parameters 125, 250 and 375, respectively (and hence the
mean times were 250, 500 and 750, while the standard

deviations are 22.36, 31.63, 38.73, respectively). The

time scale was chosen to be similar to the biological

data, so the whole interval was considered as having

1000 ms length. The distribution was truncated to the

intervals (125, 375), (375, 625), and (625, 875), respec-

tively. The intensities of the two processes were (40, 10)

(in the units of spikes per s) before the first change point,

(60, 50) between the first and the second change points,

(40, 50) after the second and (40, 30) after the last

change point. The raster plot is given in Fig. 7a, and the

PSTH of these data is given in Fig. 7b and c.

The first change can be observed nicely, the other

change points can be observed but less clearly. We

looked for a single change point in each of the intervals

(125, 375), (375, 620), and (625, 875). The starting point

was a homogeneous Poisson process and uniform

change point distribution on the grid of 5 ms in each

of the intervals. In Fig. 8 the estimated densities of the

change points are plotted together with the histogram of

the actual ‘unobserved’ times. As can be expected from

the raster plot, the distribution of the first change point

was well estimated. The two other distributions were

estimated better than we expected, but not as good as

the first. The estimates of the intensities are given in

Table 1.

In Fig. 9 we ordered the trials according to the time of

the first change point, and plotted the a posteriori

Fig. 8. Simulated data, histogram of the actual time of the change points and their estimates (stars). (a) First change point; (b) second change point;

(c) third change point.
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expectation and the actual time of the first change point

as against trial number. That is, for each trial we

computed the a-posteriori distribution of the change
point, as in the E-step of the algorithm, and calculated

the expectation of this distribution. It can be observed

that although the distribution was estimated quite well

the individual times were not. Of course, it can be

expected that the Bayes estimator will shrink towards

the mean. The estimator seems to depend mainly on the

a priori distribution. In the introduction we argued that

estimators which are based on the trial by trial estima-
tion of the change point may yield a poor estimator of

the change point distribution. Fig. 9 proves our case.

3.4. Mathematical background

In the appendix of an extended version of the paper,

(Ritov et al., 2002) we give a rigorous analysis of a
mathematical model of the problem. Unlike the model

discussed above, the theoretical model considered has

one change point and the observed process is of

inhomogeneous Poisson process. We discuss in the

extended version the information bound for estimating

the intensities, and show that they can be estimated in

the parametric
ffiffiffi
n

p
rate. The distribution function, on

the other hand, can be estimated only in the rate of n1/3,

a much slower rate than the n1/2 which is attainable with

direct observations on the change point times. A bound

on the achievable rate is established by presenting pairs

of distributions which are n�1/3 apart but the Neyman�/

Pearson tests between them have sum of errors bounded
away from 0. That this bound is actually achievable is

proved by exhibiting a simple non-iterative estimator

that actually achieves the optimal rate. This estimator is

based on monotone smoothing of the PSTH which was

used above. See Figs. 1(c), 2(b), 5(c), 6(b and c), 7(c). We

also show that under some conditions the maximum-

likelihood is rate optimal.

4. Discussion

We applied the empirical Bayes change point meth-

odology to neural data. Using empirical examples and

simulated data we showed that this technique can be

used to obtain a sound understanding of the nature of

the synchronization between an external event and the

cells activity.

Fig. 9. Simulated data, actual times of the change point times and their a posteriori mean. The trials are ordered according to the time of the change

point. The actual times are given by the solid time as function of the trial number. The opened circles are the a-posteriori expectation.

Table 1

Simulation: estimates and true intensities (in spikes per s)

Interval (0, t1) (t1, t2) (t2, t3) (t1, 1)

First process 41.5 (40) 56.2 (60) 37.6 (40) 39.7 (40)

Second process 9.9 (10) 47.9 (50) 48.0 (50) 31.4 (30)
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The theoretical statistical discussion was restricted to

point processes in continuous time, while the algorithms

were restricted to 0�/1 processes in discrete time. Both

are approximations of reality. In practice, the cells
operate in continuous time while the output of the

experimental system is a discrete one. Moreover, the

spikes are not points in time, but have a duration of the

order of 1 ms. So we preferred to use the convenient

model for the given discussion.

Another statistical method that was used for similar

data is that of the hidden Markov model (HMM),

(Radons et al., 1994; Abeles et al., 1995; Gat et al., 1997;
Ver Hoef and Cressie, 1997). This model presumes that

the recorded cells are behaving as a Markov process

with a finite state space. These states are not observed

directly. Instead, each state is characterized by a

different vector of cell intensities, the hidden mechan-

ism. The above papers suggest different algorithms to

estimate the parameters of the model, and show that the

inferred states may have a biological meaning.
The change point model suggested in this paper may

seem more restricted than the HMM. Practically, the

number of possible states was restricted to two or three,

with a prescribed transition order. However, by defini-

tion, the HMM assumes that the brain stays at each

state an exponential time. In theory, this can be

bypassed by assuming many pseudo-states. Actually,

any stationary process can be weakly approximated by
(not necessarily simple) HMM, see Kunsch et al. (1995).

However, for this we may need many more states than it

would be practical to assume.

The change point model does not suffer from this

problem. Any distribution function for the time of

change can be assumed. Therefore, the change point

model is preferred to the HMM, whenever we assume

that the number of change points is small, and the
distribution of the time to the changes is of interest.

In this paper we consider a non-parametric model for

the time to the change in the intensity. We could assume

a parametric model, such as a gamma distribution with

one or two unknown parameters. However, such a

parametric assumption is restricting and without the

usual benefits in terms of speed of convergence and

simplicity of the estimation procedure. The algorithm
will be very much the same, and the rate of convergence

will not be much different.

We considered the testing of the existence of a change

point versus the hypothesis that no change occurs. We

intend to discuss elsewhere the more difficult problem of

the existence of a relatively sharp change at a random

time versus graduate change.

In this paper we considered a mathematical model of
neurons which react to external event after a random

delay. The reaction is an abrupt change in the firing

intensity, but whose time is different in different trials.

The main take home message of our analysis is that in

‘real cases’ of neuronal data, the distribution of the

change point can be estimated, while single trial estima-

tion of the specific value of the change point is prone to

a large error. However, proper estimation of the
distribution of the change point can reliably help in

the discrimination between two plausible physiological

scenarios. In the first scenario there is a smooth

transition of the discharge rate in all single trials,

whereas in the second scenario there are sharp transi-

tions with jitter of their timings. This discrimination can

not be done by the classical PSTH analysis, and the

present manuscript provides a quantitative (rather than
the subjective raster plot display) method for the

discrimination between these two possible physiological

settings.
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