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Abstract: Patients with nonparkinsonian tremors are the sec-
ond largest group treated with functional neurosurgery. We
summarize the present pathophysiological knowledge of these
conditions. Essential tremor (ET) may be due to oscillations
within the olivocerebellar circuit. There is experimental evi-
dence from animal models for such a mechanism, and clinical
data indicate an abnormal function of the cerebellum in ET.
Cerebellar tremor may be closely related to the tremor seen in
advanced ET. The malfunction of the cerebellum causes a
pathological feed-forward control. Additionally an oscillator
within the cerebellum or its input/output pathways may cause
cerebellar tremor. Almost nothing is known about the patho-

physiology of dystonic tremor. Holmes tremor is based on a
nigral and a cerebellar malfunction and presents clinically as
the combination of tremor in Parkinson’s disease and cerebellar
tremor. Neuropathic tremor can be extremely disabling and is
thought to be due to an abnormal interaction of the disturbances
within the periphery and abnormal cerebellar feedback. Unlike
the case of Parkinson’s disease, functional neurosurgery of
nonparkinsonian tremors is not yet based on a solid patho-
physiological background. © 2002 Movement Disorder Society
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In the case of Parkinson’s disease, new pathophysi-
ological insights have significantly influenced the targets
for functional stereotactic surgery, both for thermoco-
agulation and for deep brain stimulation. Without recent
knowledge of the basal ganglia circuits1 and their abnor-
mal functioning,2–5 the subthalamic nucleus would not
have been used as the target for surgery.6 For tremors
other than parkinsonian tremor, our understanding is
much less advanced. Despite a long neurosurgical tradi-
tion of treating them with lesions of the thalamic ven-
tralis intermedius (Vim) or the zona incerta7–12 our
understanding of their pathophysiology is poor. This
overview has selected those issues which a basic neuro-
scientist and a clinician, both specialized for movement
disorders, consider to be of potential importance for a
future integrative pathophysiology. Tremors are based on
one of four basic pathophysiological principles: me-
chanical oscillations, reflex oscillations, central oscilla-

tions, or a feedback-driven oscillation. These principles
often interact in a particular tremor but mostly one of
these mechanisms is dominant. Almost all tremors that
may be considered for functional neurosurgery are due to
central oscillations or another central mechanism. In our
view, the following tremors either represent an estab-
lished indication or may improve with functional neuro-
surgery essential tremor, parkinsonian tremor, dystonic
tremor, cerebellar tremor, Holmes tremor, or neuropathic
tremor. Parkinsonian tremor is dealt with in a parallel
study and is for that reason not specially mentioned here.
The present study is partly based on a recent review.13

ESSENTIAL TREMOR
Essential tremor is a mostly hereditary condition, and

linkage has been found for several genes.14–16Pathoana-
tomical investigations could not yet identify any mor-
phological changes.17 This finding supports the idea that
ET is due to a functional abnormality within the central
nervous system (CNS). Clinically, it is a slowly progres-
sive, monosymptomatic disorder with postural and ki-
netic tremor; in advanced stages, intention tremor can
severely handicap the patients affected.

Different lines of evidence support the hypothesis that
essential tremor is caused by a functional disturbance of
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the olivocerebellar circuit. The most convincing clinical
evidence is probably the observation that ET disappears
after lesions of the cerebellum,18 the pons,19,20 or the
thalamus21; locations which are all part of the cerebro-
cerebello-cerebral loop. Positron emission tomography
(PET) studies have shown that there is cerebellar hyper-
activity in ET, although it is not yet clear whether this is
the cause or the result of tremor in ET.22–27Harmine, a
b-carboline related to harmaline has been shown to in-
duce a tremor in normal man, which shares some features
with ET.28–30Therefore, the animal studies with the har-
maline model of tremor are of specific interest for the
pathophysiology of ET. It could be shown for different
species, that cells of the inferior olive get synchronized
and that their rhythmic activity is transferred through the
cerebellum and the reticulospinal projections to the mo-
toneurons.30 The hypothesis has been put forward that
ET could be generated in a similar way.

A recent line of evidence comes from the study of
cerebellar functions in ET. It has been shown first that
there are subtle functional abnormalities indicating a cer-
ebellar malfunction in ET. The triphasic pattern under-
lying ballistic movements31 shows distinct abnormalities
resembling the situation in cerebellar disease.32 It was
observed33 that both the onset of the antagonist activity,
which is normally breaking the agonist movement, and
the activity of the second agonist are delayed. The re-
sulting movement abnormality is an overshoot, and this
is a feature typical for cerebellar pathology.31 Another
approach was to study the kinesiology of hand move-
ments in ET. Voluntary target movements show an in-
tention tremor that is indistinguishable from cerebellar
tremor in almost half of the patients with ET.34 Despite
earlier clinical description of these features35–37this has
never been interpreted as a sign of cerebellar malfunc-
tion. Additionally, there is a slowness of voluntary
movements and hypermetria, which can be regarded as a
further argument for a cerebellar dysfunction in ET.34

Subsequently the gait of patients with ET has been as-
sessed, and as expected, the abnormalities of bipedal
regular gait are only mild but are significantly abnormal.
However, the tandem gait of patients with ET shows
gross abnormalities (Fig. 1) with an increased number of
missteps and other features typical for cerebellar gait.38

These abnormalities are preferentially found in ET pa-
tients who also have intention tremor, possibly indicating
an abnormality of cerebellar gait control despite inten-
tion tremor of the leg is not seen in these patients. We
have interpreted these findings to reflect a progressive
cerebellar disturbance in ET, depending on the severity
of the condition. If intention tremor develops in the set-
ting of ET, we assume a disturbance of the cerebellar

feed-forward control, which has been introduced earlier
as a possible cause of tremor. Due to rhythmic discharges
of the cerebellar output nuclei or even the whole olivo-
cerebellar system, the cerebellar control of hand move-
ments and gait may no longer be functioning regularly.

Meanwhile, it is generally accepted that ET is a central
tremor. For individual patients, this can be demonstrated
by spectral analysis of the accelerometer and electro-
myography (EMG). As in all central tremors, the EMG
peak frequency will not shift when the extremity is
loaded.39–43Unfortunately this finding cannot always be
demonstrated in early ET44; thus, the distinction between
ET and enhanced physiological tremor may be difficult
in the early phase.

The Vim and Vop are the preferred and established
targets for functional neurosurgery with both lesion-
ing or DBS. The success of this approach is well-docu-
mented.12,45–50 However, the pathophysiological basis
for this success is unclear. As the Vim is the target of the
pallidothalamic outflow, essential tremor was suggested
to be produced within the basal ganglia loop and parkin-
sonian tremor to be produced within the cerebellar loop51

but the supporting data for this hypothesis are poor. For
years stereotactic lesioning has been focussed to include
the Vim and the zona incerta,9,52a region through which
pallidothalamic and cerebellothalamic fiber tracts pass.
Hassler and colleagues9 put the hypothesis forward that
part of the effect is due to a lesion of the cerebellotha-
lamic tract passing through the zona incerta. Recently
two successfully treated patients have been described
who had their DBS electrodes in the border zone of the
zona incerta and the Vim.53 Similarly, the most effective
electrodes with deep brain stimulation in Parkinson’s
disease have been localized at the lower border of the
zona incerta just neighboring the subthalamic nucleus
(Volkmann et al., personal communication). Thus, from
clinical experience, the zona incerta seems to be a crucial
structure. Lesioning and stimulation of this structure
seem to be equally effective with respect to tremor. As
we do not know how stimulation works, either removal
or high-frequency stimulation of the cerebellothalamic or
the pallidothalamic bundle may be responsible for the
therapeutic effect on tremor. The influence of these pro-
jections onto the tremor-producing network may take
place at thalamic or at cortical levels. Other targets for
thermocoagulation have been assessed in the early times
of lesional surgery but no conclusive results were
reached. Therefore, further animal research assessing the
interaction of cerebellar and basal ganglia output may be
the key to answer the question why Vim/zona incerta
surgery works. It may also help to answer whether other

G. DEUSCHL AND H. BERGMANS42

Movement Disorders, Vol. 17, Suppl. 3, 2002



FIG. 1. Direct tracings of markers attached in projection on the fifth metatarsal bone of both feet in a view from above (see schematic drawing in
the upper center of the figure) for healthy subjects (HC), patients with ET and predominantly postural tremor (ETPT), essential tremor with intention
tremor (ETIT), and cerebellar disease (CD). Recordings were made during tandem walking on the treadmill over 20 seconds of continuous
measurement. Note the dysmetric and even ataxic leg movements in ETIT and CD. (From Stolze et al., 200138)
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locations such as cerebellar structures might be better
targets for DBS in ET.

DYSTONIC TREMOR
Despite many studies on dystonic tremor,54–73 this

type remains still a poorly classified entity. It has re-
cently been defined clinically74 as a mainly postural/
kinetic tremor in an extremity or body part that is af-
fected by dystonia and that is usually not seen during
complete rest. These are mostly focal tremors with ir-
regular amplitudes and variable frequency (mostly below
7 Hz). Very rarely rest tremors may also occur.

A typical example of dystonic tremor is tremulous
spasmodic torticollis (or dystonic head tremor). In many
patients with dystonic tremor, “gestes antagonistes” or
“trick maneuvers” lead to a reduction of the tremor am-
plitude. This approach can be used to separate dystonic
head tremor75 from essential head tremor. The tricks are
less common in dystonic tremors of the extremities, and
it has been proposed that these tricks may be related to
the basic mechanisms underlying dystonia76 rather than
being a specific feature of dystonic tremor only. We are
far from having a clear idea of how this tremor is gen-
erated,13 but it may be related to the mechanism of dys-
tonia most likely generated within the basal ganglia
loop.77–79

Reports on the treatment of dystonic tremors are rare
because the target symptom in these cases is usually
dystonia. Mostly the patients have been operated within
the pallidum internum (pallidotomy or DBS) but at least
one recent case was also successfully stimulated within
the Vim.53 One of our own cases, who presented with
dystonic tremor but only mild dystonic signs, is now
stimulated bilaterally in the Vim. This strategy led to a
successful control of tremor but dystonic signs persist
and show even some progression. One of the most im-
portant questions to be answered by clinicians is whether
pallidal procedures can block dystonic tremor as effec-
tively as tremor in PD. This mechanism would point at a
significant disturbance of the basal ganglia loop for the
generation of dystonic tremor. Even more than with other
tremors, the location of the deep brain electrodes in dys-
tonic tremor is based on clinical experience only.

CEREBELLAR TREMOR
Cerebellar (intention) tremor is diagnosed according

to the following clinical signs74: (1) pure or dominant
intention tremor, uni- or bilateral; (2) tremor frequency
mostly below 5 Hz; (3) postural tremor may be present
but no rest tremor. The most careful clinical study of
cerebellar tremor in multiple sclerosis has confirmed and
further extended these criteria.80

Cerebellar tremor is often used synonymously with
intention tremor, although various clinical expressions of
tremor have been described for cerebellar disorders.36

The mechanisms underlying cerebellar tremors have
been studied extensively in animals. The cerebellum was
either experimentally removed or its function has been
temporarily blocked by cooling or chemical agents.81–88

It has been shown with selective muscimol injections
into deep cerebellar nuclei that the critical structure
seems to be the globose-emboliform nucleus.89 Tremor-
related activity in monkeys was found in the motor and
somatosensory cortex and the globose-emboliform
nucleus but not the dentate nucleus.88 Therefore, trans-
cerebellar and transcortical loops seem to be involved.
Because intention tremor persists after deafferentation in
monkeys,90 the somatosensory loops cannot be the only
source of intention tremor. Thus not only a feedback, but
also a feed-forward control must be the critical function
of the cerebellum, and it is likely that a cerebrocerebellar
loop is the possible cause. The analysis of voluntary
movements in animal experiments and patients with cer-
ebellar lesions suggests that the major cause is a dis-
turbed timing and grading of the activity of antagonistic
muscles. Indeed, several studies are suggesting that long-
latency reflexes are enhanced in cerebellar disease.91–93

Although this mechanism seems to be the most important
mechanism, some arguments do also advocate an addi-
tional central oscillator mechanism for cerebellar tremor.

Cerebellar tremors are classically treated with lesions
or DBS within the Vim. This location has been found
empirically, but the results are much less convincing than
for PD or essential tremor.94–104Hassler and colleagues
have pointed out, that the lesion of the zona incerta be-
low the thalamus is mandatory for a good result of ther-
mocoagulating lesions in cerebellar tremor.9,105 In a re-
cent series, Alusi and coworkers80,104have advocated the
Vop with or without additional lesions to the zona incerta
to be the preferred target for functional neurosurgery of
cerebellar tremor. The mode of action of surgery onto
this type of tremor is unknown. It may be speculated that
the oscillations are similarly blocked as in the case of
essential tremor.

HOLMES TREMOR
The description by Holmes of this tremor syndrome106

was among the first descriptions; hence, the name Hol-
mes tremor was proposed recently74 instead of rubral or
midbrain tremor, which were considered to be anatomi-
cally misleading. The following criteria apply to this
tremor. (1) Rest and intention tremor are present with
sometimes irregular presentation. In many patients pos-
tural tremor is also present. The tremor is often not as
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rhythmical as other tremors. (2) Tremor is of low fre-
quency, mostly below 4.5 Hz. (3) If the time when the
lesion occurred can be identified (e.g., in case of a ce-
rebrovascular accident), a variable delay (mostly 4 weeks
until 2 years) between the lesion and the first occurrence
of the tremor is typical.

It is generally accepted, that Holmes tremor is a symp-
tomatic tremor which is known to occur after different
lesions centered to the brainstem/cerebellum and thala-
mus. Two systems, the dopaminergic nigrostriatal sys-
tem and the cerebellothalamic system must be lesioned
according to pathoanatomical107 and PET data.108 As
these systems can also be lesioned along their fiber
tracts, this tremor might also be caused by lesions in
other locations (even at multiple cortical sites). There are
a few patients reported who had preexisting cerebellar
lesions that led to a stable cerebellar deficit, subsequently
developing an additional nigrostriatal deficit109–111and,
therefore, presented later with a Holmes tremor. Another
case had unilateral removal of the cerebellum because of
a Lindau tumor and developed Parkinson’s disease more
than 10 years later, confirmed by reduced striatal dopa-
minergic terminals. He presented with classical parkin-
sonian tremor on the side with the preserved cerebellum
but had Holmes tremor on the side with the removed
cerebellum.112 This finding is strong clinical evidence
that indeed both functional deficits, cerebellar and nigro-
striatal, must come together to produce this specific form
of tremor.

The functional deficits of these two systems, thus, are
reflected by the clinical symptoms and some insights into
the interplay of the cerebellum and the basal ganglia are
provided by this form of tremor. The resting tremor is
known to cease when voluntary movements are per-
formed; this is no longer true when the ipsilateral cer-
ebellum is affected and the resting tremor seems to spill
into voluntary movements, giving rise to an intention
tremor of the same frequency as the resting tremor. Thus
the cerebellar influence on motor performance may to
some extent compensate the deficits induced by basal
ganglia pathology at least during voluntary activity.
Moreover, the resting tremor frequency seems to be in-
fluenced by the cerebellum as it is usually below 4 Hz in
Holmes tremor compared with frequencies between 4
and 6 Hz in parkinsonian rest tremor. It may be hypoth-
esized that the cerebellar system can compensate the
basal ganglia circuits during voluntary movements as far
as tremor production is concerned.

Patients with Holmes tremor are lesioned or stimu-
lated within the Vim. There are only a small number of
patients who have been treated, and it seems to at least
improve the tremor.97,113,114

NEUROPATHIC TREMOR
Neuropathic tremor is assumed if a patient develops

tremor in association with a peripheral neuropathy and
no other neurological diseases associated with tremor.
Some forms of peripheral neuropathies tend to develop
tremors more often than others. Especially demyelinating
neuropathies (e.g., dysgammaglobulinaemic neuropa-
thies) are frequent causes of such tremors.115–119 The
tremors are mostly postural and kinetic tremors with a
frequency between 3 and 6 Hz in arm and hand muscles.
The frequency in hand muscles can be lower than in
proximal arm muscles in patients with gammopathies,120

which can also be used as an electrophysiological tool
for the diagnosis of the condition. This finding can also
be taken as an argument that tremor frequency may de-
pend on the length of the reflex pathway; therefore, the
pathophysiological principle of the tremor may be an
abnormal reflex mechanism.

There are some animal models that present a combi-
nation of tremor and peripheral neuropathy but often
with additional pathologic conditions of the central ner-
vous system, such as the gracile axonal dystrophy (GAD)
mouse mutant,121 the grey tremor mutant mouse,122,123

or the twitcher mouse124 that exhibit tremor, sensory
ataxia, and paresis of the hindlimbs. But as the patho-
logical condition is mostly not limited to the peripheral
nervous system, it is unknown which role the neuropathy
plays for the development of these conditions. Physi-
ological analysis for these animal tremors is completely
lacking.

In patients with dysgammaglobulinaemic neuropathy,
wrist tremor could be modulated by mechanical pertur-
bations or median nerve electrical shocks; thus, a periph-
eral contribution by reflexes seems to be present.120

Simple voluntary wrist movements were of normal du-
ration and peak velocity, but the kinematic profile was
asymmetric. Each movement was associated with a tri-
phasic EMG pattern in agonist-antagonist-agonist
muscles but the duration of the bursts were prolonged
and the onset of the second agonist was delayed. This
observation is very similar to the findings in essential
tremor but it is still unclear whether it is due to tremor,
to the peripheral neuropathy found in these subjects, or to
a secondary malfunction of the cerebellum. Finally, the
cerebellum showed abnormal activation in this condi-
tion.120 These results support the hypothesis that dis-
torted and mistimed peripheral inputs are among the im-
portant reasons for this tremor. The finding of abnormal
cerebellar activation may indicate that the central pro-
cessing of the afferent information is defective or it is
reflecting peripheral tremor.

Considering all the data together, it seems clear that
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the central pathways are normal in these patients and the
major pathological state seems to be the peripheral slow-
ing and possibly distortion of afferent signals. It may be
hypothesized that, in contrast to cerebellar disease, not
the feed-forward control of movement but the feedback
control is the cause for the rhythmic disturbance in these
patients. However, as only a minority of patients with
severe peripheral neuropathies is developing tremor a
further—and hitherto unknown—pathological condition
must be present to produce this tremor.

Most of these patients have only a slight tremor; there
are no formal studies available. Some need medical treat-
ment; however, some of them are completely resistant to
medical treatment. For these patients, surgical treatment
may be discussed. We are not aware of any patient with
this malignant tremor who has received functional neu-
rosurgery.
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