
Midbrain dopamine neurons encode decisions for
future action
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Current models of the basal ganglia and dopamine neurons emphasize their role in reinforcement learning. However, the role of

dopamine neurons in decision making is still unclear. We recorded from dopamine neurons in monkeys engaged in two types of

trial: reference trials in an instructed-choice task and decision trials in a two-armed bandit decision task. We show that the

activity of dopamine neurons in the decision setting is modulated according to the value of the upcoming action. Moreover,

analysis of the probability matching strategy in the decision trials revealed that the dopamine population activity and not the

reward during reference trials determines choice behavior. Because dopamine neurons do not have spatial or motor properties,

we conclude that immediate decisions are likely to be generated elsewhere and conveyed to the dopamine neurons, which play a

role in shaping long-term decision policy through dynamic modulation of the efficacy of basal ganglia synapses.

The art of associating sensory information with appropriate behavior
or decision making has been investigated through the prisms of a
multitude of fields. The search for psychological1,2 and neural corre-
lates3–8 of decision making was paralleled by machine learning research.
One form of machine learning, reinforcement learning, has achieved
popularity because of its efficiency and its resemblance to real-life
situations. Developments in reinforcement learning have led to a
powerful learning algorithm known as temporal difference (TD)
learning9. TD learning, originally used for modeling classical condi-
tioning, is based on evaluating sensory inputs, or states, by assigning
them a value according to the anticipation of reward. Learning to
optimize this evaluation is achieved by constant comparison of the
value of the current state with its previous estimation. When a
discrepancy arises, this difference, termed the TD error, is used to
improve estimation of the state value.

The classical conditioning context provides an inadequate descrip-
tion of the typical reinforcement learning setting in which agents act
upon sensory information to execute behavioral decisions. Moving
from passive TD learning to active control requires modification of the
computational algorithm, as the aim of learning has now shifted to
optimization of actions in different states to maximize the long-term
accumulated reward. The actions affect not only reward, but also the
transition from one state to another, an outcome that must also be
learned. This challenge is resolved by reinforcement learning models
that incorporate actions into different variations of TD algorithms9,10

using the TD error to update the state evaluation and to adjust the set
of rules that govern the decisions in each state, or the policy.

Policy optimization can be achieved in a number of fashions.
One way is through the design of specialized actor/critic network
architecture. In these networks, the TD error is used to teach two

separate elements, which, when combined, result in efficient action
selection. The critic estimates the values of all encountered states (as
in the classical conditioning context), whereas the actor stores the
policy and performs actions. Each action can lead to a different state.
This may cause a deviation from the estimated value of the previous
state. The resulting change, the TD error, is fed back to the actor by the
critic and is used to shape the desired policy. An alternative class of
algorithms does not involve explicit representation of the policy but
relies on direct assessment of the value of state-action pairs (also
termed action values or Q values) rather than the value of the state
alone9–12. Thus, both the actor-critic and Q-value estimation models
are taught by a TD error. This error signal is independent of the action
in the actor-critic architecture, whereas a Q-value error signal is
affected by the chosen action.

The phasic response of midbrain dopamine neurons located in the
substantia nigra pars compacta (SNc) and the ventral tegmental area
(VTA) is a likely neural correlate of the TD error, thus underscoring the
applicability of the TD learning algorithm to neural learning8,13–18.
Because the basal ganglia network, the main target of dopamine inner-
vation, is commonly regarded as an action selection and generation
system19,20, the dopamine signal is incorporated as the critique in actor/
critic TD models of the basal ganglia19,21,22. In these models, the dopa-
mine signal is used to reinforce behavior by adjusting synaptic efficacy in
the appropriate neuronal circuits of the input layer of the basal ganglia
networks—that is, the striatum23,24. Some models also use the dopa-
mine signal to directly select possible actions24. Earlier electrophysiolo-
gical recordings of dopamine neurons typically involved classical condi-
tioning14,25 or instructed-choice instrumental conditioning15–17 tasks,
but the role of dopamine in behavioral decisions involving competing
actions and in policy formation has not been explored experimentally.
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To elucidate the role of SNc dopamine neurons in decision making,
we recorded their activity in three monkeys performing trials of
a two-armed bandit task (decision); these trials were randomly
embedded in reference trials of a probabilistic instructed-choice
task (reference) (Fig. 1, task details in Methods). Briefly, in reference
trials (80–90% of all trials), monkeys were presented with one of
four possible visual conditioned stimuli. The stimulus was a random
geometrical shape occupying the right or left half of a computer
screen. The location of the stimulus indicated the correct direction
of the arm movement, and the stimulus identity indicated the
probability of receiving a reward upon correct completion of the
trial. In decision trials, monkeys were simultaneously presented
with a pair of conditioned stimuli from the reference set, allowing
them a choice of action and, consequently, a choice of reward
probability. This behavioral setting therefore allowed us to map the
TD error responses emitted by dopamine neurons in the reference task
and to use them as a reference for the study of behavior in a decision

situation, as well as to study dopamine responses in the decision
process itself.

RESULTS

Reference dopamine responses determine decision policy

We observed no differences in motor parameters (reaction time,
movement time) between the two trial types (t-test, P 4 0.2). Thus
it can be assumed that the monkeys used similar motor strategies and
could use the information they gathered in the reference trials to
determine their behavior in the decision context. Two related para-
meters in the reference trials could impact the decision policy: the
delivered reward and the TD error–like dopamine activity in these
trials. We examined the monkeys’ choices in the decision trials (C),
and their relation to the reward rate (R) and dopamine responses to
the conditioning stimuli (D) in the reference trials (Fig. 2). Because
dopamine activity was highly correlated with reward rate (R2¼ 0.918),
the policy-determining factor could be the reward rate itself or the
dopamine activity. In one model (Fig. 2b, inset), decision choices are
governed by the reference reward rates, which independently also
modulate the reference dopamine activity. In the alternative model
(Fig. 2d, inset), the impact of reference reward on decision choices is
mediated by the reference dopamine activity.

Reference reward rates (Fig. 2a) were computed as the a priori
reward probability corrected by the monkeys’ error rates on those trials.
In the reference task, the reward-choice relationship was monotonic
(Fig. 2b). The monkeys’ policy was thus a suboptimal probability
matching strategy26,27 (R2 ¼ 0.884, P o 0.001):

Cright /
Rright

Rright + Rleft
;

where C is the probability of a particular choice and R is the probability
of being rewarded on that choice. Logistic regression analysis,
which should be applied to relations between a proportion and a
continuous variable, yielded a highly significant relation (likelihood
ratio test, P o 0.001).

Comparable studies in human subjects report a similar monotonic
relationship in inexperienced gamblers, in contrast to trained gamblers
who tend to maximize their return27. Our design, in which decision
trials were only sparsely embedded in the reference trials, is a primate
model for this situation. Recent studies in repeated decision tasks4,28

show local dependence of choice behavior on reward history. Our task
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Figure 2 Contribution to probability matching behavior. (a) The probability of being rewarded after presentation of each conditioned stimulus in reference

trials, corrected for errors in which the monkeys pressed the wrong key. Bars reflect mean, error bars are s.e.m. (b) Probability of choosing an alternative in the

decision trials as a function of the relative probability of being rewarded for that alternative in the reference trials, computed from a. For visibility, the

independent variable is displayed on a linear scale, although the R2-value was computed using angular transformation (Methods). The 16 points represent all

combinations of pairs of the four visual stimuli. Inset, possible interactions between reward (R), dopamine signal (D) and choices (C); probability of reward has
a dual effect: inducing activity in dopamine neurons and determining the monkeys’ choices. (c) Dopamine reinforcement signal (D), computed as the deviation

from baseline firing rate following the conditioned stimuli in the reference trials. Bars reflect mean, error bars are s.e.m. n ¼ 97 neurons, data averaged across

trials. (d) Probability of choosing an alternative in the decision trials as a function of the relative dopamine response to that alternative in the reference trials,

computed from c. Conventions and scales as in b. Inset, the effect of reward on choices is mediated by the reinforcing dopamine signal. DA, dopamine.
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design precludes such a behavioral strategy and indeed, choice-
triggered analysis did not reveal any local history effects (Supplemen-
tary Fig. 1 online).

We studied the monkeys’ decision behavior as predicted by the
relative dopamine population reinforcement signal in the reference
trials (Fig. 2c,d). Dopamine population responses were quantified as
the difference in firing rate between the baseline activity and the
responses to the visual conditioned stimuli (Fig. 2c). These responses
were used to predict choice behavior in the decision task (Fig. 2d). The
highly significant linear correlation between reference dopamine and
decision choice behavior (R2 ¼ 0.930) was corroborated by logistic
regression analysis (likelihood ratio test, P o 0.001). Moreover, the
logistic fit of choice behavior to dopamine activity was significantly
better than the fit to reward rate (likelihood ratio test, P o 0.05). To
examine the interplay between the three variables R, D and C, we
conducted a logistic regression analysis on the full model. In this
analysis, decision choice behavior is described in terms of the con-
tributions of both the reference reward rates and reference dopamine
activity. The full model contained only one significant predictor,
dopamine activity (P o 0.05); reward rate was not a significant factor
(P 4 0.3). Thus, the correlation between choices and dopamine
reinforcement is not a byproduct of the common dependence on
reward rate in the reference task. Rather, the reference dopamine
response can be viewed as the mediator between reward and choice
behavior. Partial correlation analysis yielded similar results (Supple-
mentary Note online).

Decision choices are not predicted by early gaze shifts

Before examining dopamine activity during decision trials, we must
rule out possible confounding effects of different gaze positions before
and during the neuronal response. We compared the horizontal eye
positions recorded during the later part of the ‘start’ period with those
during the conditioned stimulus presentation (Fig. 1). We separated,
according to future action, all traces of the horizontal axis of eye
positions recorded during reference and decision trials (Fig. 3a). In this
example session, the eye positions in the reference trials at the time of
stimulus presentation (onset indicated by arrowhead) differed slightly
according to stimulus position (and, consequently, according to the
direction of the future arm movement), but in decision trials, the eye
positions were similar regardless of future movement.

To quantify possible differences in the visual inputs to the monkeys
(and to SNc dopamine neurons29), which may have affected the
neuronal results, we first examined differences in gaze direction in
the decision trials for trials in which opposing actions were taken. A
two-tailed t-test between the groups of eye positions at two time
points—the time of stimulus presentation and 400 ms after presenta-
tion (neuronal responses were examined in this 400-ms window)—
indicated no differences (P 4 0.3 in all recorded sessions). We further
examined the gaze positions by principal component analysis (PCA;
Methods) by taking the 1 s preceding and the 400 ms following the
visual stimulus presentation (green line in Fig. 3a) and projecting all
traces on the space defined by the first and second principal compo-
nents (Fig. 3b, left) and by the third and fourth components (right). In

this example, the first four components
explain 77.4% of the variability. In the refer-
ence task, the two movement directions were
reflected in the gaze positions, but the projec-
tions of the eye movements in the decision
tasks overlapped, indicating that they did not
depend on future movement. We repeated this
analysis on all recording sessions. In all cases,
the first four components accounted for
470% of the variability. In no session were
the decision trials separable based on future
movement. As expected, the separation
between clusters in the period surrounding
the ‘go’ signal was far better both in reference
and decision trials. Finally, for each decision
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Figure 3 Eye positions in reference and decision

trials. (a) Example traces of horizontal eye position

from an entire recording session recorded from

monkey C. Left, all traces surrounding

presentation of conditioned stimuli (arrowhead)

that were followed by ‘left’ movement in reference

(top) and decision (bottom) trials. Right, all traces

surrounding presentation of conditioned stimuli

(arrowhead) that were followed by ‘right’

movement in reference (top) and decision

(bottom) trials. (b) Example of principal

component analysis (PCA). All segments between

1 s before and 400 ms after stimulus presentation
of the example shown in a (green bars) are

projected on the first two principal components

(PCs) (left) and the third and fourth principal

components (right). The principal components and

the fraction of variability they account for are

indicated along the axes. Key: red +, reference

right; blue +, reference left; green +, decision

right; yellow +, decision left.
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trial, we calculated an index indicating the relative time the monkey
gazed to the right during the 1.4-s period described above. The
z-transformation of this index (Methods) in left-movement trials was
compared to that in right-movement trials by t-test. In all examined
days, no difference was found between right- and left-movement
decisions (P 4 0.2 in all sessions).

Decision dopamine responses reflect future action

The monkeys’ probability matching policy, which exhibited a varia-
bility of responses in identical situations, allowed us to explore
dopamine neuron activity during decision making. The activity of
different neurons was pooled to analyze the dopamine population
response. The dopamine response in the reference trials accurately
represents the TD error in the estimation of the state value—that is, the
average expected reward14,16. On the other hand, in decision trials
responses of the population of dopamine neurons to each of the
decision stimulus pairs were ranked according to their state value,
these responses were statistically indistinguishable (P 4 0.1, one-way
analysis of variance (ANOVA); Fig. 4a). However, in contrast to the
instructed-choice reference trials, the prospects of reward in the

decision trials depended on the monkeys’ choice of future action. We
therefore separated the decision trials based on the action taken at the
completion of the trials. When the mean population responses to the
presentation of six pairs of nonidentical stimuli were separated
according to choice of future action, in all pairs the dopamine
signal was significantly higher when the monkeys chose the key
associated with the higher probability of reward (post-hoc comparison,
P o 0.01; Fig. 4b).

To uncover the effects underlying this variability, a two-way ANOVA
was applied to the data. This analysis showed a clear main effect of
chosen cue (Po 0.001), with no effect of the discarded cue (P4 0.4),
and a marginal interaction effect (P ¼ 0.05), resulting from the
difference in dopamine responses when the 75% cue was chosen. We
therefore pooled the data of the dopamine responses to the conditioned
stimulus in the decision trials according to the value of the chosen
actions (Fig. 4c, solid circles). Response of the dopamine neurons to
the conditioned stimuli differed significantly according to future
actions (one-way ANOVA, P o 0.001). Furthermore, the responses
were proportional to the theoretical value of the different actions,
similarly to the differential responses in the reference trials16.

This finding points to a new interpretation of the dopamine
responses observed in previous classical conditioning and instructed-
choice experiments. Under these conditions, action is trivial or non-
existent and therefore does not alter the neuronal responses. To
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Figure 5 Time course of the responses of dopamine neurons in the reference

and decision tasks. (a) Evolvement in time of the population responses to the

conditioned stimulus in reference (red) and decision (black) trials. The res-

ponse (baseline subtracted) was averaged for all conditioned stimuli, pooled

together and smoothed with a Gaussian filter (s.d. ¼ 10 ms). The shading

indicates the s.e.m. of the average responses. Inset, average responses to the

stimulus in reference and decision trials, separated according to their action

values (in descending order). (b) The time course of differential activation

between the pairs of choices made in the decision trials. Population
averaging and smoothing as in a. Gray bars indicate the 95% confidence

interval in the theoretical situation where there are no differential responses,

calculated using a randomization procedure of all choices (n ¼ 1,000).

Dotted line indicates zero. Dashed vertical line indicates the time of stimulus

presentation. Time and firing scale are common for a and b.

Figure 4 Dopamine neurons code the TD error of action value. (a) Dopamine

responses to pairs of conditioned stimuli in decision trials, presented in

ascending order according to state value (defined as the average probability

of reward following each pair). Bars reflect mean, error bars are s.e.m.

(n ¼ 97 neurons). (b) Dopamine responses to pairs of conditioned stimuli

in decision trials, separated according to the chosen action. Bars reflect

mean, error bars are s.e.m. (n ¼ 97 neurons). (c) Dopamine responses to

conditioned stimulus in reference (empty circles) and decision (filled circles)

trials, as a function of the action value (defined as the average probability of

reward following each action). In the reference trials, the expected reward

probability is corrected for response errors. By definition, there are no

response errors in the decision trials. Points reflect mean ± s.e.m. (n ¼ 97

neurons). (d–f) Dopamine responses to reward delivery in the rewarded

decision trials. All conventions are as in a–c.
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illustrate the full dependence of the dopamine response on the expected
reward probability given the chosen action (that is, the state-action
value), we combined the results from the reference (empty circles) and
decision trials (linear regression, R2 ¼ 0.972; Fig. 4c). To examine the
consistency of the dopamine responses with the TD error signal
associated with the action value (Q value), we analyzed the comple-
mentary dopamine responses to received reward in the decision trials
(Fig. 4d–f). As predicted, the dependence of dopamine responses on
the action value was reversed (but see Methods for statistical limits of
this analysis). The responses of all neurons are consistent with this
picture (Supplementary Fig. 2 online).

Finally, we examined the time course of development of choice-
related activity in the dopamine neurons (Fig. 5). The similarity of the
time course of neuronal activation in the decision and reference trials
(Fig. 5a) challenges the attractive notion that dopamine neurons code
the action value in two stages, the first relating to the state value and the
second adjusting for the action value. Choice-related activity was
defined as the time course of differential activation in response to the
high- versus low-probability cue choices in the decision task (Fig. 5b).
The differential response crossed the upper limit of the 95% confidence
interval 122 ms after stimulus presentation. This time course is very
similar to the development of information regarding the state value in
reference conditions16. Therefore, although this differentiation may
serve as an indication of the upper bound on the time of decision
formation, it cannot provide us with further insight into the dynamics
of the decision process.

DISCUSSION

The results presented in this report provide key insight into the role of
dopamine in decisions, both in the long-term modification of behavior
and in immediate decision making. First, probability matching deci-
sion behavior is likely to be mediated by the activity of dopamine
neurons rather than by reward in the reference trials, suggesting that the
history of dopamine responses shapes long-term behavioral policy.
Second, the activity of dopamine neurons reflects future choice of
action as early as 122 ms after the presentation of the conditioning
stimulus. This has implications for the position of dopamine in the
hierarchy of decision making: that is, it is likely that dopamine neurons
receive information about the decision from another structure. Both
these results jibe with claims in previous lesion and behavioral studies
regarding the long-term rather than immediate effect of dopamine on
reward-oriented behavior30.

An alternative conclusion would be that the signal of the dopamine
neurons reports the error for the state value and that it directly
determines decision. Some models have adopted this view24, in
which the TD state value signal has an additional effect on the
probability of an upcoming action. However, because the dopamine
signal is extremely homogenous in the origin structures13 and highly
widespread at the targets31,32, the possibility of separate TD signals for
each alternative can be excluded. Therefore, such models of the direct
effect of dopamine on immediate decisions can only apply to situations
involving evaluation of a single alternative. In our decision setup, as in
many real-life situations, this is not the case. Therefore, if the dopamine
signal is used for immediate decision, the multiple choices must be
translated into a single choice. For example, the deciding circuits may
use the dopamine TD signal to determine the probability of the action
that maximizes reward expectation. However, this strategy will collapse
in scenarios where there are multiple (42) choices.

We therefore favor the complementary hypothesis, that dopamine
neurons are already informed of an upcoming action. The striatal
projection neurons could follow a probabilistic policy7, which is shaped

by the history of dopamine reinforcement. Two broad classes of
reinforcement learning models, incorporating an action-generation
mechanism into different variations of TD algorithms9, were proposed
to accommodate for decision making. In the actor/critic model, the
network includes a separate policy-performing element, the actor, as
well as a reward-predicting element, the critic. In the other model, the
behavior is integrated into the evaluation process, assigning a separate
value (Q value) to each possible behavioral choice in every state. Most
reinforcement learning models of the basal ganglia adopt the actor/
critic view and thus stress the importance of learning state values. This
model was supported by single-unit recordings of dopamine neurons33

and by other studies31 using classical conditioning and instructed-
choice designs, but has never been tested in decision contexts. Our
results call for a reappraisal of the current computational models of
dopamine and the basal ganglia so that they incorporate the learning
and estimation of Q values (as achieved by the SARSA learning
algorithm9 or advantage learning12) into the learning and decision
algorithms of these neuronal structures.

METHODS
Animal training and behavioral tasks. Data were obtained from three

macaque monkeys (Macaca fasicularis, two females, monkeys C and E; one

male, monkey Y), weighing 2.5–4 kg. Care and surgical procedures were in

accordance with the US National Institutes of Health Guide for the Care and

Use of Laboratory Animals (1996) and with Hebrew University guidelines for

the use and care of laboratory animals in research, supervised by the institu-

tional animal care and use committee.

The monkeys were trained on a task with randomly ordered, intermittent,

instructed-choice, instrumental conditioning trials (reference, 80%–90% of

trials) and two-armed bandit decision trials (decision, 10%–20% of trials)

(Fig. 1). In all trials, the monkeys faced a 17" computer screen placed at a

distance of approximately 40 cm. A panel with three keys was located at arm’s

length. Trials were initiated when the monkey touched the central key. After a

variable delay (1.5–2.5 s in monkeys C and E, 2–4 s in monkey Y), the visual

conditioned stimulus appeared for a short period (0.3 s for monkeys C and E,

0.45 s in monkey Y).

In reference trials, the conditioned stimulus, located either on the left or the

right side of the screen, was one of a set of four, each associated with a different

probability (0.25, 0.50, 0.75 and 1.00) of receiving an equal amount of reward

upon correct trial completion. The visual stimulus occupied half of the screen

(corresponding to approximately 24 � 36 visual degrees). The stimulus

presentation was followed by a fixed hold period (2 s for monkeys Y and C,

1.5 s for monkey E), after which a ‘go’ signal appeared. The monkeys were

required to press either the left or the right key, corresponding to the location

of the memorized stimulus, within an allowed response time of 800 ms for

monkeys C and E and 700 ms for monkey Y. Correct responses were followed

(with an interval of 700 ms) by a liquid reward, according to the probability

associated with the conditioned stimulus. No external stimulus indicated the

expected time of the reward.

In decision trials, the stimulus presentation phase consisted of a simulta-

neous display of two stimuli in both possible locations, and the monkeys could

choose to press either the left or the right key. Equal-probability stimulus pairs

were not excluded. The monkeys were then rewarded according to the

probability associated with the stimulus that appeared in the chosen location.

All other parameters (prestimulus duration, stimulus duration, hold duration,

maximum response time and reward delay) were identical in the decision and

reference trials.

All trials (incorrect, correct, rewarded and unrewarded) were followed by

a variable intertrial interval (ITI): 3–6 s in monkeys E and C, 5–7 s in monkey

Y. The monkeys performed 300–500 trials on most training and recording days.

Monkeys were trained for 5–6 d per week and were allowed free access to food

and water on the weekends. The monkeys were not trained for gaze fixation.

The trial sequence was completely randomized. Every trial was chosen, with

a preset probability, to be either a reference trial (P ¼ 0.8 or 0.9) or a decision

trial (P ¼ 0.1 or 0.2). In reference trials, the right or left locations of the

NATURE NEUROSCIENCE VOLUME 9 [ NUMBER 8 [ AUGUST 2006 1061

ART ICLES
©

20
06

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

en
eu

ro
sc

ie
nc

e



stimulus were then drawn with an equal probability, as was the stimulus

identity. In decision trials, the stimuli on each side were chosen in the same

way. All trial parameters (trial type, stimulus location and identity and the

length of the variable-duration trial segments) were randomly chosen with the

same random number generator. To avoid repetition of the same random

sequence, the seed of the random number generator was changed with each

initiation of the behavioral program, based on absolute time (srand and rand

functions, Visual C++ 6.0).

The monkeys were fully trained on the task and acquainted with all possible

stimuli before the recording chamber was implanted. Training consisted of

familiarization with the behavioral setup (12–20 training days), followed by

training on the task in a deterministic regime in which all correctly performed

trials were rewarded (60–92 training days, to a criterion of 80% correct

performance). For this part of the training we used a different stimulus from

those used in the experiment. Finally, we introduced the set of conditioned

stimuli and the associated reward probabilities (for 30–41 training days). The

same set was then used in the recording days (45–150 days of recording from

multiple structures).

Magnetic resonance imaging (MRI) localization of recording targets. We

estimated the stereotaxic coordinates of the substantia nigra pars compacta

(SNc) according to MRI scans aligned with an anatomical atlas of Macaca

fasicularis34,35. After training, a square Cilux recording chamber with a 27-mm

(inner) side was attached to the skull with its center targeted at stereotaxic

coordinates of the SNc. The recording chamber was tilted 40–501 laterally in

the coronal plane. The chamber’s coordinate system was adjusted according to

MRI imaging. An MRI scan (Biospec Bruker 4.7 Tesla animal system, fast-spin

echo sequence; effective TE ¼ 80 ms and TR ¼ 2.5 s; 13 coronal slices, 1 or

2 mm wide) was performed with 150-mm diameter tungsten electrodes

at accurate coordinates of the chamber. We then aligned the two-dimensional

MRI images with the sections of the atlas. All surgical and MRI procedures were

performed under general and deep anesthesia.

Recording and data acquisition. During recording sessions, the monkeys’ heads

were immobilized, and 4–8 glass-coated tungsten microelectrodes (impedance

0.3–1.2 MO at 1,000 Hz), confined within a cylindrical guide (1.65 mm inner

diameter), were advanced separately (EPS, Alpha-Omega Engineering) into the

SNc. The electrical activity was amplified with a gain of �10k and band-pass

filtered with a 300–6,000 Hz four-pole Butterworth filter (MCP+, Alpha-Omega

Engineering). Upon reaching the target area in the SNc, as judged by the

stereotaxic and MRI coordinates and by the electrophysiological hallmarks of the

encountered structures along the penetration, dopamine cells were identified

according to their low frequency (o15 Hz nonperiodic discharge), long

duration (41.5 ms) and polyphasic spikes36,37, and by a firing elevation in

background single- and multi-unit activity in response to unexpected

reward34,38. After recording, the electrode tracks were generally followed to the

neighboring structures, further aiding verification of the recorded structures39.

Neuronal activity was sorted and classified online using a template-matching

algorithm (MSD, Alpha-Omega Engineering). Spike-detection pulses and

behavioral events were sampled at 12 kHz (AlphaMap, Alpha-Omega Engi-

neering). Gaze positions were recorded by an infrared reflection detector

(Dr. Bouis). The infrared signal was amplified with a gain of �500, band-pass

filtered with a 1–100 Hz four-pole Butterworth filter (MCP+, Alpha-Omega

Engineering), and sampled at 750 Hz. The signal was not calibrated and thus

did not allow for conversion of analog to digital (A/D) units to visual angles. In

addition, three digital video cameras recorded the monkeys’ faces and upper

and lower limbs.

Statistical analysis. The first step in the neuronal data analysis targeted

verification of the real-time isolation quality and stability of the spiking activity.

Only spike trains considered to be emitted by a single cell during real-time

sorting were subjected to rate-stability analysis, in which the instantaneous

firing rate of the neuron in task-neutral periods was examined for changes. The

firing rate during the ITI period in consecutive trials in the entire recording

session was graphically displayed, and the largest continuous segment of

stable data was selected for further analysis. Stable cells were chosen for the

database after examination for response to at least one behavioral event

(visual stimulus, reward, and reward-omission) in the reference task, using a

Mann-Whitney U-test (P o 0.05 after a Bonferroni correction for multiple

comparisons). Only cells that were stable for at least five trials of each condition

in the reference task and at least three pair combinations in the decision task

were included.

Cell responses to behavioral events for ANOVA, linear regression, logistic

regression and partial correlation analysis were parameterized as the difference

between average firing rate in the 400 ms following the event and that in the

preceding 400 ms. The 400-ms time window was chosen as the average time in

which neuronal responses in reference trials returned to baseline (Fig. 5). Some

individual neurons had longer responses. We therefore repeated the analyses

with 500-ms windows. This analysis yielded comparable results. The neuronal

data presented here relies on population averages of all recorded cells, normal-

ized by the number of trials recorded from each cell. Averaging responses

normalized for baseline firing rate, as well as for maximum response rate, did

not affect the results.

For linear regression of the relative fraction of choice as a function of the

relative neuronal and reward reinforcements, the proportion variables (p) were

converted from the [0,1] range using an angular transformation40:

y ¼ arcsinð ffiffiffi
p

p Þ.
Choice probability was also examined using logistic regression analysis40,

which investigates the relation of continuous independent variables to binomial

dependent variables by the following logistic model:

p ¼ eb
Tx

1 + eb
Tx
;

where p is the probability of the dependent variable, x is the vector of predictors

and b is a vector of the regression coefficients. The parameters of the logistic

model were estimated using maximum likelihood estimation, and the overall

likelihood of the model can be examined and compared to other models.

Statistical analysis of the neuronal data during reward delivery in decision

trials is problematic, owing to the experimental design and the behavioral

strategy of the monkeys. Because of the probabilistic regime of our reward

schedule, the number of rewards increased consistently with the presumed

independent variable, the ‘action value’, creating an imbalance in the respective

sample sizes and their variability. This effect was also inflated by the monkeys’

probability matching behavior (Fig. 2b).

Traces of eye position recordings were subjected to three statistical tests to

verify that future action in decision trials was not correlated with eye positions

in early segments of the trial. A t-test checked for systematic differences in gaze

direction between trial types at the time of the stimulus presentation and at the

end of the examination window of neuronal responses (400 ms after cue onset).

To identify possible temporal patterns of eye movement, PCA was conducted

on all sequences of sampled eye positions; the analyzed segments started 1 s

before the stimulus display and ended 400 ms after display, at which time our

examination of neuronal responses ended. In this type of analysis, the multi-

dimensional data are searched for a smaller set of dimensions that define a new

space that explains most of the variability in the data. These dimensions or

principal components are ordered according to the fraction of variability for

which they account. Formally, the principal components are the eigenvectors of

the covariance matrix describing the data. One application of PCA is clustering

of data by projecting the different data points onto the lower dimension space.

We projected the eye positions from the reference trials in the relevant 1,400-ms

trial segment onto the two-dimensional spaces defined by the first and second

components and by the third and fourth components (Fig. 3b), to search for

visually distinguishable clusters between the two movement directions (right

and left). We then added the data points corresponding to the decision trials

and visually examined their mapping in these spaces. Finally, we devised an

index indicating the amount of time the gaze was directed toward the right

during segments starting 1 s before stimulus display and ending 400 ms after

display. We established the baseline as the mean horizontal eye position during

the ITI. Variability was assessed in the same period. ‘Right’ annotates all

samples in which the A/D value exceeded baseline by over 1 s.d., and ‘left’

annotates the samples below baseline by at least 1 s.d. (more conservative

thresholds were also checked, yielding qualitatively similar results):

Seeright ¼
Tright � Tleft

Ttrial
;

where Tright is the number of samples gazing right in a trial.
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To transform this index into a normally distributed variable we computed its

Fisher z-transformation40:

Zright ¼
1

2
ln

1 + Seeright

1 � Seeright

� �

and subjected this new variable to a t-test.

All data analysis was performed using Matlab 7.0 (MathWorks) code.

Note: Supplementary information is available on the Nature Neuroscience website.
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