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Purpose of review

Akinesia, rigidity and low-frequency rest tremor are the three cardinal motor signs of

Parkinson’s disease and some Parkinson’s disease animal models. However,

cumulative evidence supports the view that akinesia/rigidity vs. tremor reflect different

pathophysiological phenomena in the basal ganglia. Here, we review the recent

physiological literature correlating abnormal neural activity in the basal ganglia with

Parkinson’s disease clinical symptoms.

Recent findings

The subthalamic nucleus of Parkinson’s disease patients is characterized by oscillatory

activity in the beta-frequency (�15 Hz) range. However, Parkinson’s disease tremor is

not strictly correlated with the abnormal synchronous oscillations of the basal ganglia.

On the other hand, akinesia and rigidity are better correlated with the basal ganglia beta

oscillations.

Summary

The abnormal basal ganglia output leads to akinesia and rigidity. Parkinson’s disease

tremor most likely evolves as a downstream compensatory mechanism.
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Introduction
In 1817, James Parkinson pointed out two paradoxically

related symptoms of the condition known today as

Parkinson’s disease. These are shaking (tremor) and

palsy (poverty and slowness of movements, akinesia/

bradykinesia). The third major symptom – rigidity

(muscle stiffness) – is clinically associated with the

akinetic disorders of the disease. Physiological studies

of the basal ganglia in animal models of Parkinsonism and

of human patients reveal neuronal oscillations mainly in

the beta-frequency range. This review summarizes the

correlations between the abnormal beta oscillations and

the akinetic–rigid symptoms and suggests that tremor

arises due to compensatory phenomena downstream from

the basal ganglia.
The basal ganglia network
Cumulative clinical and experimental evidence strongly

indicates that the major pathological event leading to the

motor symptoms of Parkinson’s disease is degeneration of

midbrain dopaminergic neurons and their striatal projec-

tions. The striatum (composed of caudate, putamen and

ventral striatum) is the main input stage of the basal

ganglia, receiving input from all cortical areas as well as

from many thalamic nuclei [1]. Therefore, a good grasp of
opyright © Lippincott Williams & Wilkins. Unauth
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the pathophysiology of Parkinson’s disease depends first

on a comprehensive understanding of the anatomy of the

basal ganglia and dopamine networks.

The classical description of the basal ganglia network

[2,3] maintains that there are two segregated internal

basal ganglia pathways that start in the striatum and

converge on the output structures of the basal ganglia

(the internal segment of the globus pallidus – GPi and

the substantia nigra pars reticulata – SNr). The ‘direct

pathway’ is a direct g-amino butyric acid (GABA)ergic

inhibitory pathway, whereas the ‘indirect pathway’ is a

polysynaptic disinhibitory pathway through the GABA-

ergic external segment of the globus pallidus (GPe) and

the glutamatergic neurons of the subthalamic nucleus

(STN). The striatal projection neurons in the direct

pathway express D1 dopamine receptors, whereas those

in the indirect pathway express D2 dopamine receptors

[4]. Dopamine has differential effects on the two stria-

topallidal pathways: it facilitates transmission along the

direct pathway via the D1 receptors and inhibits trans-

mission along the indirect pathway via the D2 receptors

[5,6]. The early biochemical observations are supported

by more modern studies using transgenic mice, in

which striatal projection (medium spiny neuron, MSN)

cells express D1 and D2 receptors. These studies have
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uncovered unappreciated differences between D1 and

D2 expressing MSNs. Dopamine D1 receptor signaling

enhances dendritic excitability, glutamatergic signaling

and striatal plasticity in striatonigral MSNs, whereas

D2 receptor signaling exerts the opposite effects in

striatopallidal MSNs.

Recently, anatomical studies have revealed an even more

complex map of basal ganglia connectivity. Direct pro-

jections from the motor cortex to the STN, termed the

‘hyperdirect pathway’ [7,8], indicate that similar to the

striatum, the STN is a major input stage of the basal

ganglia. In addition, striatal neurons projecting to the GPi

and SNr have been shown to send collaterals to the GPe

[9,10]. Thus, both ‘direct’ and ‘indirect’ striatal projection

neurons, as well as STN neurons, modulate GPe activity.

Moreover, recently described feedback projections from

the GPe to the striatum [11,12], as well as the GPe to GPi

projection [13–16], strongly suggest that the GPe is a

central nucleus in the basal ganglia circuitry rather than

simply a relay station in the indirect pathway.

Recent physiological studies have emphasized the role of

dopamine in the plastic regulation of the efficacy of

corticostriatal transmission [17,18��,19,20], beyond its

regulation of striatal excitability [21]. Using brain slices

from dopamine D1 and D2 receptor transgenic mice [20],

it was demonstrated that dopamine plays complementary

roles in D1 vs. D2 MSNs that lead to bidirectional and

Hebbian synaptic plasticity. There are other neuromodu-

lators that affect the plasticity and the excitability of

striatal neurons. Acetylcholine (ACh) is probably the

second major neuromodulator of the striatum [22,23].

Striatal ACh is secreted by the cholinergic interneurons

of the striatum (physiologically identified as the tonically

active neurons, TANs), and the delicate balance between

striatal dopamine and cholinergic activity [24,25�] is an

old concept that is still under active research. Addition-

ally, the striatum is innervated by diffuse serotonin,

noradrenergic and histamine innervations [26]. Future

studies of the different roles of these neuromodulator

systems on striatal functioning [27��], as well as their

interaction with one another, should lead to a much better

understanding of this complex and critical system in

normal and pathological control of motor, as well as

cognitive and emotional behavior.
Parkinson’s disease: clinical symptoms and
pathology
Parkinson’s disease and Parkinsonism are the most com-

mon basal ganglia movement disorder and affect 1–3% of

the elderly population [28]. The dopaminergic system

is the most seriously affected, and initial successful

therapeutic strategies are based on different forms of

dopamine replacement therapy.
opyright © Lippincott Williams & Wilkins. Unautho
On the basis of clinical observations of six patients, James

Parkinson described two of the most important motor

symptoms of Parkinson’s disease [29]. The first was

shaking – a low (4–7 Hz) frequency tremor at rest (tremor

amplitudes decrease during voluntary action, increase

during rest and are augmented by mental stress).

The second symptom Parkinson described, which was

probably contradictory in his mind, was palsy (or akinesia

in modern terminology). Akinesia is characterized by

poverty of spontaneous movement and slowness (brady-

kinesia) of voluntary (goal directed) and spontaneous

movement. Parkinson also described the postural

abnormalities of his patients, one of the other cardinal

motor symptoms of Parkinson’s disease. However, prob-

ably due to the fact that physical examination was not part

of the medical routine in his day, Parkinson did not notice

the rigidity (increased muscular tonus) of Parkinson’s

disease patients. Rigidity was only recognized later as

one of the major clinical triad of Parkinson’s disease.

Cognitive and emotional deficits frequently accompany

the motor symptoms of Parkinson’s disease and its treat-

ment. However, here, we focus on the pathophysiology of

the three main motor symptoms of Parkinson’s disease:

akinesia, rigidity and tremor at rest.
Akinesia/rigidity vs. tremor in Parkinson’s
disease
Parkinson’s disease is not a homogenous disease, neither

across patients nor along the natural course of even a single

patient. Tremor is usually an episodic phenomenon, as

opposed to the unremitting symptoms of akinesia and

rigidity, and statistical studies of the motor symptoms of

Parkinson’s disease indicate the tremor to be independent

of the other symptoms [30��]. Although often the present-

ing symptom of Parkinson’s disease, tremor is not present

in all human Parkinson’s disease patients. Human Parkin-

son’s disease covers a broad spectrum and can present as

marked akinesia and rigidity (AR-subtype) or as a predo-

minant resting tremor (T-subtype), usually with akinesia

and rigidity. The AR-subtype is also defined as the ‘pos-

tural instability gait difficulty subtype’ (PIGD-subtype).

The division of the Parkinson’s disease population into

these two subgroups probably reflects major pathological

differences. T-subtype Parkinson’s disease patients

have a better prognosis and slower disease progression

than AR-subtype patients. Several studies have indi-

cated that the pathology of human T-subtype Parkin-

son’s disease differs from that of the AR-subtype Par-

kinson’s disease, with the retrorubral area more severely

affected in the tremor dominant form [31]. Most forms of

nonidiopathic Parkinson’s disease (e.g. neuroleptic-

induced Parkinsonism, progressive supranuclear palsy

and multiple system atrophy) display akinesia and rigidity

but not rest tremor. Unlike rigidity and akinesia, clinical

severity of the Parkinson’s disease tremor does not
rized reproduction of this article is prohibited.
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correlate with severity of the dopaminergic deficit in the

striatum or with clinical progression of the disease. Antic-

holinergic agents, which were the first drugs available for

the symptomatic treatment of Parkinson’s disease, tend to

have better effects on tremor than on akinetic–rigid

symptoms, whereas akinesia and rigidity may show better

and earlier response to dopamine replacement therapy.

Early stereotaxic surgeries of the thalamus of Parkinson’s

disease patients further indicated that tremor and rigidity

reflect two different entities [32]. The cerebellar-receiving

nucleus of the thalamus (e.g. the ventralis-intermedius,

Vim) has been considered as the optimal target for stereo-

taxic procedures for amelioration of Parkinson’s disease

tremor and other tremors [33,34], whereas another

thalamic target (the ventralis-oral-anterior) has been indi-

cated as the optimal target for Parkinson’s disease rigidity.

In summary, most clinical human studies indicate that

Parkinson’s disease akinesia/rigidity and tremor may

reflect different, not mutually exclusive, abnormal pro-

cesses in the central nervous system of Parkinson’s

disease patients. The role of striatal dopamine depletion

and the basal ganglia seem to be much more important in

akinesia and rigidity. Parkinson’s disease tremor may be

modulated by peripheral manipulation and by the activity

of other central neuronal systems. It is, therefore, possible

that abnormalities of transmitter systems other than

dopamine (e.g. cholinergic, serotonergic) or neural cir-

cuits other than the basal ganglia (e.g. cerebellum [35])

play a critical additive role in the generation of Parkin-

son’s disease tremor. Below, we will further discuss the

evidence from animal models and from electrophysio-

logical studies of both human patients and animal models

supporting the distinction between the akineto-rigid vs.

the tremor symptoms of Parkinson’s disease.
Animal models of Parkinson’s disease and
dopamine depletion
The clinical studies of Parkinson’s disease patients have

been enriched by parallel studies of different animal

models of this disease. Early animal models of Parkin-

son’s disease were based on lesions of midbrain areas in

monkeys [36,37]. These anatomical lesions mainly pro-

duced rigidity but only rarely resulted in a spontaneous

sustained tremor. Careful analysis of the correlation

between the clinical symptoms and the extent of the

lesion led to the conclusion that experimental rest tremor

is the result of combined damage to the nigro-striatal

dopaminergic projections as well as to the cerebellar

outflow to the red nucleus and thalamus [38]. Damage

to only one of these neuronal systems was not sufficient

for reliable generation of experimental tremor.

More modern animal models of Parkinson’s disease

have shifted from anatomical to chemical lesions. Early
opyright © Lippincott Williams & Wilkins. Unauth
chemical – such as, the reserpine and 6-hydroxydopamine

(6-OHDA) – animal models of Parkinson’s disease were

limited (by chemical or anatomical targeting) to dopa-

minergic damage and mainly reproduced akinesia.

Rigidity and tremor are hardly ever reported in studies

of 6-OHDA-treated rodents. Modern, molecular

biology-inspired rodent models of Parkinson’s disease

also frequently fail to exhibit the full clinical symptoms

of Parkinson’s disease. It could be that the rodent brain is

less dependent on the integrity of the dopamine system

or it is equipped with better compensatory mechanisms

for dopamine depletion. We will, therefore, focus below

on primate studies.

The more recently introduced primate 1-methyl-

4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of

Parkinson’s disease [39–41] better mimics the clinical

and the pathological picture of Parkinson’s disease. Post-

mortem examination of the brains of MPTP-treated

primates reveals that the primary damage is to the dopa-

minergic system. However, as in human Parkinson’s

disease, other neuromodulators are also affected [42].

Macaque monkeys treated with MPTP mainly exhibit

the akinetic–rigid symptoms of Parkinson’s disease.

Low-frequency (4–7 Hz) tremor is not readily replicated

in MPTP-treated macaque monkeys. But some primate

species, notably the vervet (African green) monkey often

develop a prominent low-frequency tremor following

MPTP injections [43,44].

Tremor usually appears several days after the develop-

ment of clinical akinesia and rigidity in the MPTP-

treated vervet monkeys. This reversed order of presen-

tation of clinical symptoms compared with human reports

[45,46] may be due to the fast induction of dopamine

depletion and evolution of symptoms in the MPTP

model that may not lead to the development of compen-

satory processes found in the slowly evolving human

disease. On the other hand, tremor is a much more overt

phenomenon than akinesia and rigidity. Human patients

or their family may first become aware of the slow

development of Parkinson’s disease by the more easily

recognizable tremor.

We conclude that, in line with the human clinical studies,

the animal models – and especially the primate models –

of Parkinson’s disease, support the distinction between

the akineto-rigid and the tremor symptoms of Parkinson’s

disease.
Neural oscillations in the dopamine-depleted
basal ganglia networks of animal models of
Parkinson’s disease
Early physiological studies of Parkinsonian MPTP-

treated monkeys emphasized changes in the discharge
orized reproduction of this article is prohibited.
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rate within the GPe, GPi and the STN (decreases rate in

GPe and increased discharge rate in STN and GPi) [47–

49]. As expected, these changes of pallidal discharge rates

were reversed in response to dopamine replacement

therapy in both human patients and primates [44,50].

More recently, research attention has been more focused

on the potential role of other aspects of neuronal activity

such as firing patterns and neuronal synchronization in

the pathophysiology of Parkinson’s disease. MPTP mon-

keys show an increase in the fraction of basal ganglia

neurons that discharge in oscillatory bursts. These oscil-

latory bursts have been found in the STN, GPe, GPi and

also in the striatum. In most cases, the basal ganglia cells

tend to oscillate both at the tremor frequency (alpha or

theta range) and at double or even triple the tremor

frequency (beta range). Nevertheless, these studies have

failed to reveal a significant fraction of neurons whose

tremor frequency oscillations are consistently coherent

with the simultaneous recorded tremor [43]. Both STN

inactivation [51] and dopamine replacement therapy [52]

significantly ameliorate the clinical motor symptoms

and reduce the GPi 8–20 Hz oscillations (but less so

the tremor frequency oscillations), supporting the critical

role of beta rather than tremor frequency oscillations in

the generation of Parkinson’s disease symptoms.

Physiological studies of simultaneously recorded neurons

in the basal ganglia of MPTP-treated monkeys demon-

strate pair-wise crosscorrelograms with oscillatory peaks

[43,53], suggesting that striatal dopamine depletion

induces abnormal coupling of basal ganglia loops. In most

cases, the maximal power of the synchronous oscillations

was found to be at double the tremor frequency. Abnor-
opyright © Lippincott Williams & Wilkins. Unautho

Figure 1 Typical examples of beta oscillatory activity in the subthalam

rigid symptoms, with and without tremor

The power spectral density (PSD) as a function of estimated distance to (cen
patient. The patients’ tremor, rigidity and akinesia/bradykinesia aggregate UPD
20; 60), respectively. The gray-scale represents 10 log10(PSD power/averag
and exit; the dot–dash lines indicate the ventral boundary of the beta osc
Disease Rating Scale.
mal pallidal synchronization decreases in response to

dopamine replacement therapy [44,52].

Studies of local field potentials (LFPs) and single unit

activity recorded from frontal cortex and the basal ganglia

of rats following 6-OHDA lesions of midbrain dopamine

neurons revealed significant increases in the power and

coherence of beta-frequency oscillatory activity [54��,55].

Administration of the dopamine receptor agonist apo-

morphine to these dopamine-depleted animals sup-

pressed the beta-frequency oscillations and increased

coherent activity at gamma frequencies in the cortex

and STN. Thus, the pattern of synchronization between

population activity in the STN, GP and cortex in the

6-OHDA-lesioned rodent model of Parkinson’s disease is

closely parallel to that seen in the MPTP primate model.
Neural oscillations in the basal ganglia
networks of human Parkinson’s disease
patients
Several lines of human noninvasive and invasive research

support the critical role of the beta oscillations in

the generation of Parkinson’s disease akinetic–rigid

symptoms. Magnetoencephalographic (MEG) studies

of T-type Parkinson’s disease human patients have

revealed strong coherence between activity in the motor

and sensory cortices and the cerebellum at double tremor

(beta range), rather than at tremor frequency [56]. Dopa-

mine replacement therapy significantly reduced these

oscillations [57].

As in animal models of Parkinson’s disease, single unit

studies of the basal ganglia of human Parkinson’s disease
rized reproduction of this article is prohibited.
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patients (performed during electrophysiological mapping

of the target area for therapeutic implantation of stimu-

lating electrodes) have reported a high fraction of GPi or

STN cells oscillating at the tremor frequency or at its

higher harmonics. However, as in the primate, the human

studies show that these oscillations are not fully coherent

with the simultaneous recorded tremor [58,59] or with the

clinical symptoms of the patients (Fig. 1). The sharp

contrast between this transient and inconsistent pallidal-

tremor synchronization and the high synchronicity found

between thalamic Vim neurons and the tremor [60]

suggest that pallidal neurons cannot be viewed as the

tremor generators.

Synchronization of basal ganglia neuronal activity is also

evident in the LFP recorded in the subthalamic region of

Parkinson’s disease patients by the macroelectrodes used

for high-frequency stimulation of these structures [61].

These oscillations occur mainly in the beta range (15–

30 Hz) and following treatment with deep brain stimu-

lation (DBS) or levodopa ameliorate or shift to higher

frequencies in the gamma range. A recent study revealed

that these LFP oscillations are correlated with akineto-

rigid clinical symptoms but not with the tremor [62�].

Finally, movement (as measured by tapping rate) has

been impaired following stimulation of the STN of

human Parkinson’s disease patients in the beta-fre-

quency range [63��].
Conclusion
In this review, we have explored the possible relation-

ships between basal ganglia oscillatory activity and Par-

kinson’s disease akineto-rigid vs. tremor symptoms.

Cumulative clinical and experimental evidence supports

the view that the Parkinson’s disease motor symptoms are

not generated by identical neuronal mechanisms. Follow-

ing striatal dopamine depletion, many basal ganglia

neurons develop synchronous oscillations at the beta

range. However, these oscillations are better correlated

with the akineto-rigid symptoms, and the Parkinson’s

disease tremor is not strictly driven by this oscillatory

activity. It seems that the abnormal synchronous oscil-

lations in the basal ganglia provide noisy input to the

frontal cortex, hence leading to Parkinson’s disease aki-

nesia and rigidity. Tremor is probably generated by

neuronal mechanisms struggling to compensate for Par-

kinson’s disease akinesia and rigidity. Future clinical

studies of the temporal relationship between akinesia/

rigidity and tremor in Parkinson’s disease patients, as well

as their electrophysiological correlates in human and

animal models, will hopefully lead to better understand-

ing of Parkinson’s disease mechanisms. This should lead

to patient optimized (pharmacological and surgical)

therapy, hopefully with better clinical results and less

side effects.
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